
the
Small
booklet

The Language

February 2005

Introduction . 1

A tutorial introduction . 3
Data and declarations . 41
Functions . 49
The preprocessor . 71
General syntax . 75
Operators and expressions . 82
Statements . 89

Directives . 93
Proposed function library . 99

Pitfalls: differences from C .106
Assorted tips .109
Appendices .120

A: Error and warning messages . 120
B: The compiler . 137
C: Rationale .142
D: License . 149

Index .151

ITB CompuPhase

ii

“Java” is a trademark of Sun Microsystems, Inc.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of ITB CompuPhase.

“Unicode” is a registered trademark of Unicode, Inc.

Copyright c© 1997–2005, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

“Small” is a simple, typeless, 32-bit “scripting” language with a C-like syn-
tax. Execution speed, stability, simplicity and a small footprint were essential
design criterions for both the language and the interpreter/abstract machine that
a Small program runs on.

An application or tool cannot do or be everything for all users. This not only
justifies the diversity of editors, compilers, operating systems and many other soft-
ware systems, it also explains the presence of extensive configuration options and
macro or scripting languages in applications. My own applications have contained
a variety of little languages; most were very simple, some were extensive. . . and
most needs could have been solved by a general purpose language with a special
purpose library. Hence, Small.

The Small language was designed as a flexible language for manipulating objects
in a host application. The tool set (compiler, abstract machine) were written so
that they were easily extensible and would run on different software/hardware
architectures. �
Small is a descendent of the original Small C by Ron Cain and James Hendrix,
which at its turn was a subset of C. Some of the modifications that I did to
Small C, e.g. the removal of the type system and the substitution of pointers by
references, were so fundamental that I could hardly call my language a “subset
of C” or a “C dialect” anymore. Therefore, I stripped off the “C” from the title
and kept the name “Small”.

I am indebted to Ron Cain and James Hendrix (and more recently, Andy Yuen),
and to Dr. Dobb’s Journal to get this ball rolling. Although I must have touched
nearly every line of the original code multiple times, the Small C origins are still
clearly visible. �
A detailed treatise of the design goals and compromises is in appendix C; here
I would like to summarize a few key points. As written in the previous para-
graphs, Small is for customizing applications (by writing scripts), not for writing
applications. Small is weak on data structuring because Small programs are
intended to manipulate objects (text, sprites, streams, queries, . . .) in the host
application, but the Small program is, by intent, denied direct access to any
data outside its abstract machine. The only means that a Small program has

2 . Introduction

to manipulate objects in the host application is by calling subroutines, so called
“native functions”, that the host application provides.

Small is flexible in that key area: calling functions. Small supports default
values for any of the arguments of a function (not just the last), call-by-reference
as well as call-by-value, and “named” as well as “positional” function arguments.
Small does not have a “type checking” mechanism, by virtue of being a typeless
language, but it does offer in replacement a “classification checking” mechanism,
called “tags”. The tag system is especially convenient for function arguments
because each argument may specify multiple acceptable tags.

For any language, the power (or weakness) lies not in the individual features, but
in their combination. For Small, I feel that the combination of named arguments
—which lets you specify function arguments in any order, and default values —
which allows you to skip specifying arguments that you are not interested in,
blend together to a convenient and “descriptive” way to call (native) functions to
manipulate objects in the host application.

3

A tutorial introduction

Small is a simple programming language with a syntax reminiscent to the “C”
programming language. A Small program consists of a set of functions and a set
of variables. The variables are data objects and the functions contain instructions
(called “statements”) that operate on the data objects or that perform tasks.

The first program in almost any computer language is one that prints a simple
Compiling and
running scripts:
see page 137

string; printing “Hello world” is a classic example. In Small, the program would
look like:

Listing: hello.sma

main()

printf "Hello world\n"

This manual assumes that you know how to run a Small program; if not, please
consult the application manual (more hints are at page 137).

A Small program starts execution in an “entry” function —in nearly all examples
of this manual, this entry function is called “main”. Here, the function main

contains only a single instruction, which is at the line below the function head
itself. Line breaks and indenting are insignificant; the invocation of the function
print could equally well be on the same line as the head of function main.

The definition of a function requires that a pair of parantheses follow the function
name. If a function takes parameters, their declarations appear between the
parantheses. The function main does not take any parantheses. The rules are
different for a function invocation (or a function call); parantheses are optional in
the call to the print function.

The single argument of the print function is a string, which must be enclosed
String literals: 77in double quotes. The characters \n near the end of the string form an escape

sequence, in this case they indicate a “newline” symbol. When print encounters
Escape sequence:
77

the newline escape sequence, it advances the cursor to the first column of the next
line. One has to use the \n escape sequence to insert a “newline” into the string,
because a string may not wrap over multiple lines.

Small is a “case sensitive” language: upper and lower case letters are considered
to be different letters. It would be an error to spell the function printf in the
above example as “PrintF”. Keywords and predefined symbols, like the name of
function “main”, must be typed in lower case.

4 . A tutorial introduction

If you know the C language, you may feel that the above example does not look
much like the equivalent “Hello world” program in C/C++. Small can also look
very similar to C, though. The next example program is also valid Small syntax:

Listing: hello.sma — C style

#include <console>

main()

{

printf("Hello world\n");

}

These first examples also reveal a few differences between Small and the C lan-
guage:
� there is usually no need to include any system-defined “header file”;
� semicolons are optional (except when writing multiple statements on one line);
� when the body of a function is a single instruction, the braces (for a compound

instruction) are optional;
� when you do not use the result of a function in an expression or assignment,

parantheses around the function argument are optional.

As an aside, the few preceding points refer to optional syntaxes. It is your choice
what syntax you wish to use: neither style is “deprecated” or “considered harm-
ful”.

Because Small is designed to be an extension language for applications, the
function set/library that a Small program has at its disposal depends on the
host application. As a result, the Small language has no intrinsic knowledge
of any function. The print function, used in this first example, must be made

More function
descriptions at
page 99

available by the host application and be “declared” to the Small parser.∗ It is
assumed, however, that all host applications provide a minimal set of common
functions, like print and printf.

• Arithmetic

Fundamental elements of most programs are calculations, decisions (conditional
execution), iterations (loops) and variables to store input data, output data and
intermediate results. The next program example illustrates many of these con-
cepts. The program calculates the greatest common divisor of two values using
an algorithm invented by Euclides.

∗
In the language specification, the term “parser” refers to any implementation that processes and

runs on conforming SMALL programs —either interpreters or compilers.

A tutorial introduction / 5

Listing: gcd.sma

/* the greatest common divisor of two values, using Euclides’ algorithm */

main()

{

print "Input two values\n"

new a = getvalue()

new b = getvalue()

while (a != b)

if (a > b)

a = a - b

else

b = b - a

printf "The greatest common divisor is %d\n", a

}

Function main now contains more than than just a single “print” statement. When
the body of a function contains more than one statement, these statements must
be embodied in braces —the “{” and “}” characters. This groups the instructions

Compound state-
ment: 89to a single compound statement . The notion of grouping statements in a com-

pound statement applies as well to the bodies of if–else and loop instructions.

The new keyword creates a variable. The name of the variable follows new. It Data declara-
tions are covered
in detail starting
at page 41

is common, but not imperative, to assign a value to the variable already at the
moment of its creation. Variables must be declared before they are used in an
expression. The getvalue function (also common predefined function) reads in
a value from the keyboard and returns the result. Note that Small is a typeless
language, all variables are numeric cells that can hold a signed integral value.

The getvalue function name is followed by a pair of parantheses. These are
required because the value that getvalue returns is stored in a variable. Normally,
the function’s arguments (or parameters) would appear between the parantheses,
but getvalue (as used in this program) does not take any explicit arguments. If
you do not assign the result of a function to a variable or use it in a expression in
another way, the parantheses are optional. For example, the result of the print

and printf statements are not used. You may still use parantheses around the
arguments, but it is not required.

Loop instructions, like “while”, repeat a single instruction as long as the loop con-
“while” loop: 92
“if–else”: 91dition (the expression between parentheses) is “true”. One can execute multiple

instructions in a loop by grouping them in a compound statement. The if–else
instruction has one instruction for the “true” clause and one for the “false”.

Observe that some statements, like while and if–else, contain (or “fold around”)
another instruction —in the case of if–else even two other instructions. The

6 . A tutorial introduction

complete bundle is, again, a single instruction. That is:

� the assignment statements “a = a - b” below the if and “b = b - a” below
the else are statements;

� the if–else statement folds around these two assignment statements and forms
a single statement of itself;

� the while statement folds around the if–else statement and forms, again, a
single statement.

It is common to make the nesting of the statements explicit by indenting any
sub-statements below a statement in the source text. In the “Greatest Common
Divisor” example, the left margin indent increases by four space characters after
the while statement, and again after the if and else keywords. Statements that
belong to the same level, such as both printf invocations and the while loop,
have the same indentation.

The loop condition for the while loop is “(a != b)”; the symbol != is the “not
Relational opera-
tors: 85 equal to” operator. That is, the if–else instruction is repeated until “a” equals

“b”. It is good practice to indent the instructions that run under control of
another statement, as is done in the preceding example.

The call to printf, near the bottom of the example, differs from the print call
right below the opening brace (“{”). The “f” in printf stands for “formatted”,
which means that the function can format and print numeric values and other
data (in a user-specified format), as well as literal text. The %d symbol in the
string is a token that indicates the position and the format that the subsequent
argument to function printf should be printed. At run time, the token %d is
replaced by the value of variable “a” (the second argument of printf).

Function print can only print text; it is quicker than printf. If you want to
print a literal “%” at the display, you have to use print, or you have to double
it in the string that you give to printf. That is:

print "20% of the personnel accounts for 80% of the costs\n"

and

printf "20%% of the personnel accounts for 80%% of the costs\n"

print the same string.

• Arrays & constants

Next to simple variables with a size of a single cell, Small supports “array vari-
ables” that hold many cells/values. The following example program displays a

A tutorial introduction / 7

series of prime numbers using the well known “sieve of Eratosthenes”. The pro-
gram also introduces another new concept: symbolic constants. Symbolic con-
stants look like variables, but they cannot be changed.

Listing: sieve.sma

/* Print all primes below 100, using the "Sieve of Eratosthenes" algorithm */

main()

{

const max_primes = 100

new series[max_primes] = { true, ... }

for (new i = 2; i < max_primes; ++i)

if (series[i])

{

printf "%d ", i

/* filter all multiples of this "prime" from the list */

for (new j = 2 * i; j < max_primes; j += i)

series[j] = false

}

}

When a program or sub-program has some fixed limit built-in, it is good prac-
Constant decla-
ration: 79tice create a symbolic constant for it. In the preceding example, the symbol

max_primes is a constant with the value 100. The program uses the symbol
max_primes three times after its definition: in the declaration of the variable se-
ries and in both for loops. If we were to adapt the program to print all primes
below 500, there is now only one line to change.

Like simple variables, arrays may be initialized upon creation. Small offers a con-
Progressive ini-
tiallers: 44venient shorthand to initialize all elements to a fixed value: all hundred elements

of the “series” array are set to true —without requiring that the programmer
types in the word “true” a hundred times. The symbols true and false are
predefined constants.

When a simple variable, like the variables i and j in the primes sieve example, is
declared in the first expression of a for loop, the variable is valid only inside the
loop. Variable declaration has its own rules; it is not a statement —although it
looks like one. One of those rules is that the first expression of a for loop may

“for” loop: 90
contain a variable declaration.

Both for loops also introduce new operators in their third expression. The ++
An overview of
all operators: 82operator increments its operand by one; that is, ++i is equal to i = i + 1. The

+= operator adds the expression on its right to the variable on its left; that is,
j += i is equal to j = j + i.

8 . A tutorial introduction

The first element in the series array is series[0], if the array holds max_primes
elements, the last element in the array is series[max_primes-1]. If max_primes
is 100, the last element, then, is series[99]. Accessing series[100] is invalid.

• Functions

Larger programs separate tasks and operations into functions. Using functions in-
creases the modularity of programs and functions, when well written, are portable
to other programs. The following example implements a function to calculate
numbers from the Fibonacci series.

The Fibonacci sequence was discovered by Leonardo “Fibonacci” of Pisa, an Ital-
ian mathematician of the 13th century—whose greatest achievement was popular-
izing for the Western world the Hindu-Arabic numerals. The goal of the sequence
was to describe the growth of a population of (idealized) rabbits; and the sequence
is 1, 1, 2, 3, 5, 8, 13, 21,. . . (every next value is the sum of its two predecessors).

Listing: fib.sma

/* Calculation of Fibonacci numbers by iteration */

main()

{

print "Enter a value: "

new v = getvalue()

if (v > 0)

printf "The value of Fibonacci number %d is %d\n",

v, fibonacci(v)

else

printf "The Fibonacci number %d does not exist\n", v

}

fibonacci(n)

{

assert n > 0

new a = 0, b = 1

for (new i = 2; i < n; i++)

{

new c = a + b

a = b

b = c

}

return a + b

}

A tutorial introduction / 9

The assert instruction at the top of the fibonacci function deserves explicit “assert” state-
ment: 89mention; it guards against “impossible” or invalid conditions. A negative Fi-

bonacci number is invalid, and the assert statement flags it as a programmer’s
error if this case ever occurs. Assertions should only flag programmer’s errors,
never user input errors.

The implementation of a user-defined function is not much different than that of
Functions: prop-
erties & features:
49

function main. Function fibonacci shows two new concepts, though: it receives
an input value through a parameter and it returns a value (it has a “result”).

Function parameters are declared in the function header; the single parameter in
this example is “n”. Inside the function, a parameter behaves as a local variable,
but one whose value is passed from the outside at the call to the function.

The return statement ends a function and sets the result of the function. It need
not appear at the very end of the function; early exits are permitted.

The main function of the Fibonacci example calls predefined “native” functions,
Native function
interface: 63like getvalue and printf, as well as the user-defined function fibonacci. From

the perspective of calling a function (as in function main), there is no difference
between user-defined and native functions.

The Fibonacci numbers sequence describes a surprising variety of natural phenom-
ena. For example, the two or three sets of spirals in pineapples, pine cones and
sunflowers usually have consecutive Fibonacci numbers between 5 and 89 as their
number of spirals. The numbers that occur naturally in branching patterns (e.g.
that of plants) are indeed Fibonacci numbers. Finally, although the Fibonacci
sequence is not a geometric sequence, the further the sequence is extended, the
more closely the ratio between successive terms approaches the Golden Ratio, of
1.618. . .∗ that appears so often in art and architecture.

• Call-by-reference & call-by-value

Dates are a particularly rich source of algorithms and conversion routines, because
the calenders that a date refers to have known such a diversity, through time and
around the world.

∗
The exact value for the Golden Ratio is 1/2(

√
5+1). The relation between Fibonacci numbers

and the Golden Ratio also allows for a “direct” calculation of any sequence number, instead of

the iterative method described here.

10 . A tutorial introduction

The “Julian Day Number” is attributed to Josephus Scaliger† and it counts the
number of days since November 24, 4714 BC (proleptic Gregorian calendar‡).
Scaliger chose that date because it marked the coincidence of three well-established
cycles: the 28-year Solar Cycle (of the old Julian calendar), the 19-year Metonic
Cycle and the 15-year Indiction Cycle (periodic taxes or governemental requisi-
tions in ancient Rome), and because no literature or recorded history was known
to predate that particular date in the remote past. Scaliger used this concept to
reconcile dates in historic documents, later astronomers embraced it to calculate
intervals between two events more easily.

Julian Day numbers (sometimes denoted with unit “jd”) should not be confused
with Julian Dates (the number of days since the start of the same year), or with
the Julian calendar that was introduced by Julius Caesar.

Below is a program that calculates the Julian Day number from a date in the
(proleptic) Gregorian calendar, and vice versa. Note that in the proleptic Grego-
rian calendar, the first year is 1 AD (Anno Domini) and the year before that is
1 BC (Before Christ): year zero does not exist! The program uses negative year
values for BC years and positive (non-zero) values for AD years.

Listing: julian.sma

/* calculate Julian Day number from a date, and vice versa */

main()

{

new d, m, y, jdn

print "Give a date (dd-mm-yyyy): "

d = getvalue(_, ’-’, ’/’)

m = getvalue(_, ’-’, ’/’)

y = getvalue()

jdn = DateToJulian(d, m, y)

printf("Date %d/%d/%d = %d JD\n", d, m, y, jdn)

print "Give a Julian Day Number: "

jdn = getvalue()

JulianToDate jdn, d, m, y

printf "%d JD = %d/%d/%d\n", jdn, d, m, y

}

†
There is some debate on exactly what Josephus Scaliger invented and who or what he called it

after.

‡
The Gregorian calendar was decreed to start on 15 October 1582 by pope Gregory XIII, which

means that earlier dates do not really exist in the Gregorian calendar. When extending the

Gregorian calendar to days before 15 October 1582, we refer to it as the proleptic Gregorian

calendar.

A tutorial introduction / 11

DateToJulian(day, month, year)

{

/* The first year is 1. Year 0 does not exist: it is 1 BC (or -1) */

assert year != 0

if (year < 0)

year++

/* move January and February to the end of the previous year */

if (month <= 2)

year--, month += 12

new jdn = 365*year + year/4 - year/100 + year/400

+ (153*month - 457) / 5

+ day + 1721119

return jdn

}

JulianToDate(jdn, &day, &month, &year)

{

jdn -= 1721119

/* approximate year, then adjust in a loop */

year = (400 * jdn) / 146097

while (365*year + year/4 - year/100 + year/400 < jdn)

year++

year--

/* determine month */

jdn -= 365*year + year/4 - year/100 + year/400

month = (5*jdn + 457) / 153

/* determine day */

day = jdn - (153*month - 457) / 5

/* move January and February to start of the year */

if (month > 12)

month -= 12, year++

/* adjust negative years (year 0 must become 1 BC, or -1) */

if (year <= 0)

year--

}

Function main starts with creating variables to hold the day, month and year,
and the calculated Julian Day number. Then it reads in a date —three calls to
getvalue— and calls function DateToJulian to calculate the day number. After
calculating the result, main prints the date that you entered and the Julian Day
number for that date. Now, let us focus on function DateToJulian. . .

Near the top of function DateToJulian, it increments the year value if it is
negative; it does this to cope with the absence of a “zero” year in the proleptic
Gregorian calendar. In other words, function DateToJulian modifies its function
arguments (later, it also modifies month). Inside a function, an argument behaves

12 . A tutorial introduction

like a local variable: you may modify it. These modifications remain local to the
function DateToJulian, however. Function main passes the values of d, m and y

into DateToJulian, who maps them to its function arguments day, month and
year respectively. Although DateToJulian modifies year and month, it does not

“Call by value”
versus “call by
reference”: 50

change y and m in function main; it only changes local copies of y and m. This
concept is called “call by value”.

The example intentionally uses different names for the local variables in the func-
tions main and DateToJulian, for the purpose of making the above explanation
easier. Renaming main’s variables d, m and y to day, month and year respec-
tively, does not change the matter: then you just happen to have two local vari-
ables called day, two called month and two called year, which is perfectly valid
in Small.

The remainder of function DateToJulian is, regarding the Small language, un-
interesting arithmetic.

Returning to the second part of the function main we see that it now asks for a day
number and calls another function, JulianToDate, to find the date that matches
the day number. Function JulianToDate is interesting because it takes one input
argument (the Julian Day number) and needs to calculate three output values,
the day, month and year. Alas, a function can only have a single return value
—that is, a return statement in a function may only containe one expression.
To solve this, JulianToDate specifically requests that changes that it makes to
some of its function arguments are copied back to the variables of the caller of the
function. Then, in main, the variables that must hold the result of JulianToDate
are passed as arguments to JulianToDate.

Function JulianToDatemarks arguments individually for the purpose of “copying
back to caller” by prefixing the arguments with an & symbol. Arguments with
an & are copied back, arguments without is are not. “Copying back” is actually
not the correct term. An argument tagged with an & is passed to the function
in a special way that allows the function to directly modify the original variable.
This is called “call by reference” and an argument that uses it is a “reference
argument”.

In other words, if main passes y to JulianToDate —who maps it to its function
argument year— and JulianToDate changes year, then JulianToDate really
changes y. Only through reference arguments can a function directly modify a
variable that is declared in a different function.

To summarize the use of call-by-value versus call-by-reference: if a function has

A tutorial introduction / 13

one output value, you typically use a return statement; if a function has more
output values, you use reference arguments. You may combine the two inside a
single function, for example in a function that returns its “normal” output via a
reference argument and an error code in its return value.

As an aside, many desktop application use conversions to and from Julian Day
numbers (or varieties of it) to conveniently calculate the number of days between
to dates or to calculate the date that is 90 days from now —for example.

• Rational numbers

All calculations done up to this point involved only whole numbers —interger
values. Small also has support for numbers that can hold fractional values:
these are called “rational numbers”. However, whether this support is enabled
depends on the host application.

Rational numbers can be implemented as either floating-point or fixed-point num-
bers. Floating-point arithmetic is commonly used for general-purpose and scien-
tific calculations, while fixed-point arithmetic is more suitable for financial pro-
cessing and applications where rounding errors should not come into play (or at
least, they should be predictable). The Small toolkit has both a floating-point
and a fixed-point module, and the details (and trade-offs) for these modules in in
their respective documentation. The issue is, however, that a host application may
implement either floating-point or fixed-point, or both or neither.∗ The program
below requires that at least either kind of rational number support is available; it
will fail to run if the host application does not support rational numbers at all.

Listing: c2f.sma

#include <rational>

main()

{

new Rational: Celsius

new Rational: Fahrenheit

print "Celsius\t Fahrenheit\n"

for (Celsius = 5; Celsius <= 25; Celsius++)

{

Fahrenheit = (Celsius * 1.8) + 32

printf "%r \t %r\n", Celsius, Fahrenheit

}

}

∗
Actually, this is already true of all native functions, including all native functions that the

examples in this manual use.

14 . A tutorial introduction

The example program converts a table of degrees Celsius to degrees Fahrenheit.
The first directive of this program is to import definitions for rational number
support from an include file. The file “rational” includes either support for
floating-point numbers or for fixed-point numbers, depending on what is available.

The variables Celsius and Fahrenheit are declared with a tag “Rational:”
Tag names: 46

between the keyword new and the variable name. A tag name denotes the purpose
of the variable, its permitted use and, as a special case for rational numbers, its
memory lay-out. The Rational: tag tells the Small parser that the variables
Celsius and Fahrenheit contain fractional values, rather than whole numbers.

The equation for obtaining degrees Fahrenheit from degrees Celsius is

◦F =
9

5
+ 32 ◦C

The program uses the value 1.8 for the quotient 9/5. When rational number
support is enabled, Small supports values with a fractional part behind the
decimal point.

The only other non-trivial change from earlier programs is that the format string
for the printf function now has variable placeholders denoted with “%r” instead
of “%d”. The placeholder %r prints a rational number at the position; %d is only
for integers (“whole numbers”).

I used the include file “rational” rather than “float” or “fixed” in an attempt
to make the example program portable. If you know that the host application
supports floating point arithmetic, it may be more convenient to “#include” the
definitions from the file float and use the tag Float: instead of Rational —
when doing so, you should also replace %r by %f in the call to printf. For details
on fixed point and floating point support, please see the application notes “Fixed
Point Support Library” and “Floating Point Support Library” that are available
separately.

• Strings

Small has no intrinsic “string” type; character strings are stored in arrays, with
the convention that the array element behind the last valid character is zero.
Working with strings is therefore equivalent with working with arrays.

Among the simplest of encryption schemes is the one called “ROT13” —actually
the algorithm is quite “weak” from a cryptological point of view. It is most widely

A tutorial introduction / 15

used in public electronic forums (BBSes, Usenet) to hide texts from casual reading,
such as the solution to puzzles or riddles. ROT13 simply “rotates” the alphabet
by half its length, i.e. 13 characters. It is a symmetric operation: applying it twice
on the same text reveals the original.

Listing: rot13.sma

/* Simple encryption, using ROT13 */

main()

{

printf "Please type the string to mangle: "

new str[100]

getstring str, sizeof str

rot13 str

printf "After mangling, the string is: \"%s\"\n", str

}

rot13(string[])

{

for (new index = 0; string[index]; index++)

if (’a’ <= string[index] <= ’z’)

string[index] = (string[index] - ’a’ + 13) % 26 + ’a’

else if (’A’ <= string[index] <= ’Z’)

string[index] = (string[index] - ’A’ + 13) % 26 + ’A’

}

In the function header of rot13, the parameter “string” is declared as an array,
but without specifying the size of the array —there is no value between the square
brackets. When you specify a size for an array in a function header, it must
match the size of the actual parameter in the function call. Omitting the array
size specification in the function header removes this restriction and allows the
function to be called with arrays of any size. You must then have some other
means of determining the (maximum) size of the array. In the case of a string
parameter, one can simply search for the zero terminator.

The for loop that walks over the string is typical for string processing functions.
Note that the loop condition is “string[index]”. The rule for true/false condi-
tions in Small is that any value is “true”, except zero. That is, when the array
cell at string[index] is zero, it is “false” and the loop aborts.

The ROT13 algorithm rotates only letters; digits, punctuation and special charac-
ters are left unaltered. Additionally, upper and lower case letters must be handled
separately. Inside the for loop, two if statements filter out the characters of in-
terest. The way that the second if is chained to the “else” clause of the first if
is noteworthy, as it is a typical method of testing for multiple non-overlapping
conditions.

16 . A tutorial introduction

Earlier in this chapter, the concept of “call by value” versus “call by reference”
A function that
takes an array as
an argument and
that does not
change it, may
mark the argu-
ment as “const”;
see page 51

were discussed. When you are working with strings, or arrays in general, note that
Small always passes arrays by reference. It does this to conserve memory and to
increase performance —arrays can be large data structures and passing them by
value requires a copy of this data structure to be made, taking both memory and
time. Due to this rule, function rot13 can modify its function parameter (called
“string” in the example) without needing to declare as a reference argument.

Another point of interest are the conditions in the two if statements. The first
Relational opera-
tors: 85 if, for example, holds the condition “’a’ <= string[index] <= ’z’”, which

means that the expression is true if (and only if) both ’a’ <= string[index]

and string[index] <= ’z’ are true. In the combined expression, the relational
operators are said to be “chained”, as they chain multiple comparisons in one
condition.

Finally, note how the last printf in function main uses the escape sequence \" to
Escape sequence:
77

print a double quote. Normally a double quote ends the literal string; the escape
sequence “\"” inserts a double quote into the string.�

Staying on the subject of strings and arrays, below is a program that separates a
string of text into individual words and counts them. It is a simple program that
shows a few new features of the Small language.

Listing: wcount.sma

/* word count: count words on a string that the user types */

main()

{

print "Please type a string: "

new string[100]

getstring string, sizeof string

new count = 0

new word[20]

new index

for (;;)

{

word = strtok(string, index)

if (strlen(word) == 0)

break

count++

printf "Word %d: ’%s’\n", count, word

}

printf "\nNumber of words: %d\n", count

}

A tutorial introduction / 17

strtok(const string[], &index)

{

new length = strlen(string)

/* skip leading white space */

while (index < length && string[index] <= ’ ’)

index++

/* store the word letter for letter */

new offset = index /* save start position of token */

new result[20] /* string to store the word in */

while (index < length

&& string[index] > ’ ’

&& index - offset < sizeof result - 1)

{

result[index - offset] = string[index]

index++

}

result[index - offset] = EOS /* zero-terminate the string */

return result

}

Function main first displays a message and retrieves a string that the user must
“for” loop: 90

type. Then it enters a loop: writing “for (;;)” creates a loop without initiali-
sation, without increment and without test —it is an infinite loop, equivalent to
“while (true)”. However, where the Small parser will give you a warning if
you type “while (true)” (something along the line “redundant test expression;
always true”), “for (;;)” passes the parser without warning.

A typical use for an infinit loop is a case where you need a loop with the test in the
middle —a hybrid between a while and a do. . .while loop, so to speak. Small

does not support loops-with-a-test-in-the middle directly, but you can immitate
one by coding an infinit loop with a conditional break. In this example program,
the loop:
� gets a word from the string —code before the test ;
� tests wether a new word is available, and breaks out of the loop if not —the

test in the middle;
� prints the word and its sequence number —code after the test .

As is apparent from the line “word = strtok(string, index)” (and the declara-
tion of variable word), Small supports array assignment and functions returning
arrays. The Small parser verifies that the array that strtok returns has the
same size and dimensions as the variable that it is assigned into.

Function strlen is a native function (predefined), but strtok is not: it must be
implemented by ourselves. The function strtok was inspired by the function of

18 . A tutorial introduction

the same name from C/C++, but it does not modify the source string. Instead it
copies characters from the source string, word for word, into a local array, which
it then returns.

In a typeless language, we might assign a different purpose to some array elements
than to other elements in the same array. Small supports enumerated constants
with an extension that allows it to mimic some functionality that other languages
implement with “structures” or “records”.

The example to illustrate enumerations and arrays is longer than previous Small

programs, and it also displays a few other features, such as global variables and
named parameters.

Listing: queue.sma

/* Priority queue (for simple text strings) */

enum message

{

text[40 char],

priority

}

main()

{

new msg[message]

/* insert a few items (read from console input) */

printf "Please insert a few messages and their priorities; \

end with an empty string\n"

for (;;)

{

printf "Message: "

getstring .string = msg[text], .maxlength = 40, .pack = true

if (strlen(msg[text]) == 0)

break

printf "Priority: "

msg[priority] = getvalue()

if (!insert(msg))

{

printf "Queue is full, cannot insert more items\n"

break

}

}

/* now print the messages extracted from the queue */

printf "\nContents of the queue:\n"

while (extract(msg))

printf "[%d] %s\n", msg[priority], msg[text]

}

A tutorial introduction / 19

const queuesize = 10

new queue[queuesize][message]

new queueitems = 0

insert(const item[message])

{

/* check if the queue can hold one more message */

if (queueitems == queuesize)

return false /* queue is full */

/* find the position to insert it to */

new pos = queueitems /* start at the bottom */

while (pos > 0 && item[priority] > queue[pos-1][priority])

--pos /* higher priority: move one position up */

/* make place for the item at the insertion spot */

for (new i = queueitems; i > pos; --i)

queue[i] = queue[i-1]

/* add the message to the correct slot */

queue[pos] = item

queueitems++

return true

}

extract(item[message])

{

/* check whether the queue has one more message */

if (queueitems == 0)

return false /* queue is empty */

/* copy the topmost item */

item = queue[0]

--queueitems

/* move the queue one position up */

for (new i = 0; i < queueitems; ++i)

queue[i] = queue[i+1]

return true

}

Near the top of the program listing is the declaration of the enumeration message.
“enum” state-
ment: 79

This enumeration defines two constants: text, which is zero, and priority, which
is 11 (assuming a 32-bit cell). The idea behind an enumeration is to quickly define
a list of symbolic constants without duplicates. By default, every constant in the
list is 1 higher than its predecessor and the very first constant in the list is zero.
However, you may give an extra increment for a constant so that the successor
has a value of 1 plus that extra increment. The text constant specifies an extra
increment of 40 char. In Small, char is an operator, it returns the number

“char” operator:
87

20 . A tutorial introduction

of cells needed to hold a packed string of the specified number of characters.
Assuming a 32-bit cell and a 8-bit character, 10 cells can hold 40 packed characters.

Immediately at the top of function main, a new array variable is declared with
the size of message. The symbol message is the name of the enumeration. It is
also a constant with the value of the last constant in the enumeration list plus
the optional extra increment for that last element. So in this example, message
is 12. That is to say, array msg is declared to hold 12 cells.

Further in main are two loops. The for loop reads strings and priority values
from the console and inserts them in a queue. The while loop below that extracts
element by element from the queue and prints the information on the screen. The
point to note, is that the for loop stores both the string and the priority number
(an integer) in the same variable msg; indeed, function main declares only a single
variable. Function getstring stores the message text that you type starting at
array msg[text] while the priority value is stored (by an assignment a few lines
lower) in msg[priority]. The printf function in the while loop reads the string
and the value from those positions as well.

At the same time, the msg array is an entity on itself: it is passed in its entirity
to function insert. That function, near the end, says “queue[queueitems] =

item”, where item is an array with size message and queue is a two-dimensional
array that holds queuesize elements of size message. The declaration of queue
and queuesize are just above function insert.

The example implements a “priority queue”. You can insert a number of mes-
sages into the queue and when these messages all have the same priority, they are
extracted from the queue in the same order. However, when the messages have
different priorities, the one with the highest priority comes out first. The “intelli-
gence” for this operation is inside function insert: it first determines the position
of the new message to add, then moves a few messages one position upward to
make space for the new message. Function extract simply always retrieves the
first element of the queue and shifts all remaining elements down by one position.

Note that both functions insert and extract work on two shared variables,
queue and queueitems. A variable that is declared inside a function, like variable
msg in function main can only be accessed from within that function. A “global
variable” is accessible by all functions, and that variable is declared outside the
scope of any function. Variables must still be declared before they are used,
so main cannot access variables queue and queueitems, but both insert and
extract can.

A tutorial introduction / 21

Function extract returns the messages with the highest priority via its function
argument item. That is, it changes its function argument by copying the first ele-
ment of the queue array into item. Function insert copies in the other direction
and it does not change its function argument item. In such a case, it is advised
to mark the function argument as “const”. This helps the Small parser to both
check for errors and to generate better (more compact, quicker) code.

A final remark on this latest sample is the call to getstring in function main:
Named parame-
ters: 53

note how the parameters are attributed with a decsription. The first parameter
is labeled “.string”, the second “.maxlength” and the third “.pack”. Function
getstring receives “named parameters” rather than positional parameters. The
order in which named parameters are listed is not important. Named parameters
are convenient in specifying —and deciphering— long parameter lists.

• Bit operations to manipulate ‘‘sets’’

A few algorithms are most easily solved with “set operations”, like intersection,
union and inversion. In the figure below, for example, we want to design an
algorithm that returns us the points that can be reached from some other point
in a specified maximum number of steps. For example, if we ask it to return the
points that can be reached in two steps starting from B, the algorithm has to
return C, D, E and F, but not G because G takes three steps from B.

Our approach is to keep, for each point in the graph, the set of other points that it
can reach in one step —this is the “next_step” set. We also have a “result” set

22 . A tutorial introduction

that keeps all points that we have found so far. We start by setting the result set
equal to the next_step set for the departure point. Now we have in the result

set all points that one can reach in one step. Then, for every point in our result
set, we create a union of the result set and the next_step set for that point.
This process is iterated for a specified number of loops.

An example may clarify the procedure outlined above. When the departure point
is B, we start by setting the result set to D and E —these are the points that
one can reach from B in one step. Then, we walk through the result set. The
first point that we encounter in the set is D, and we check what points can be
reached from D in one step: these are C and F. So we add C and F to the result
set. We knew that the points that can be reached from D in one step are C and
F, because C and F are in the next_step set for D. So what we do is to merge
the next_step set for point D into the result set. The merge is called a “union”
in set theory. That handles D. The original result set also contained point E,
but the next_step set for E is empty, so no more point is added. The new result

set therefore now contains C, D, E and F.

A set is a general purpose container for elements. The only information that a set
holds of an element is whether it is present in the set or not. The order of elements
in a set is insignificant and a set cannot contain the same element multiple times.
The Small language does not provide a “set” data type or operators that work on
sets. However, sets with up to 32 elements can be simulated by bit operations. It
takes just one bit to store a “present/absent” status and a 32-bit cell can therefore
maintain the status for 32 set elements —provided that each element is assigned
a unique bit position.

The relation between set operations and bitwise operations is summarized in the
following table. In the table, an upper case letter stands for a set and a lower
case letter for an element from that set.

concept mathematical notation Small expression

intersection A ∩B A & B

union A ∪B A | B

complement A ~A

empty set ε 0

membership x ∈ A (1 << x) & A

To test for membership —that is, to query whether a set holds a particular ele-
ment, create a set with just one element and take the intersection. If the result
is 0 (the empty set) the element is not in the set. Bit numbering starts typically

A tutorial introduction / 23

at zero; the lowest bit is bit 0 and the highest bit in a 32-bit cell is bit 31. To
make a cell with only bit 7 set, shift the value 1 left by seven —or in a Small

expression: “1 << 7”.

Below is the program that implements the algorithm described earlier to find all
points that can be reached from a specific departure in a given number of steps.
The algorithm is completely in the findtargets function.

Listing: set.sma

/* Set operations, using bit arithmetic */

main()

{

enum (<<= 1) { A = 1, B, C, D, E, F, G }

new nextstep[] =

{ C | E, /* A can reach C and E */

D | E, /* B " " D and E */

G, /* C " " G */

C | F, /* D " " C and F */

0, /* E " " none */

0, /* F " " none */

E | F, /* G " " E and F */

}

#pragma unused A, B

print "The departure point: "

new source = clamp(.value = toupper(getchar()) - ’A’,

.min = 0,

.max = sizeof nextstep - 1

)

print "\nThe number of steps: "

new steps = getvalue()

/* make the set */

new result = findtargets(source, steps, nextstep)

printf "The points reachable from %c in %d steps: ", source+’A’, steps

for (new i = 0; i < sizeof nextstep; i++)

if (result & 1 << i)

printf "%c ", i + ’A’

}

findtargets(source, steps, nextstep[], numpoints = sizeof nextstep)

{

new result = 0

new addedpoints = nextstep[source]

while (steps-- > 0 && result != addedpoints)

{

result = addedpoints

for (new i = 0; i < numpoints; i++)

if (result & 1 << i)

addedpoints |= nextstep[i]

}

24 . A tutorial introduction

return result

}

The enum statement just below the header of the main function declares the con-
“enum” state-
ment: 79 stants for the nodes A to G, but with a twist. Usually, the enum starts counting

from zero; here, the value of the first constant, A, is explicitly set to 1. More
noteworthy is the expression “(<<= 1)” between the enum keyword and the open-
ing brace that starts the constant list: it specifies a “bit shifting” increment. By
default, every constant in an enum list gets a value that is 1 above its predecessor,
but you can specify every successive constant in an enumeration to have a value
that is:
� its predecessor incremented by any value (not just 1) —e.g., “(+= 5)”;
� its predecessor multiplied by any value —e.g., “(*= 3)”;
� its predecessor bit-shifted to the left by any value —e.g., “(<<= 1)”;

Note that, in binary arithmetic, shifting left by one bit amounts to the same as
multiplying by two, meaning that “(*= 2)” and “(<<= 1)” do the same thing.

When working with sets, a typical task that pops up is to determine the number
“cellbits” con-
stant: 80 of elements in the set. A straightforward function that does this is below:

Listing: simple bitcount function

bitcount(set)

{

new count = 0

for (new i = 0; i < cellbits; i++)

if (set & (1 << i))

count++

return count

}

With a cell size of 32 bits, this function’s loop iterates 32 times to check for a single
bit at each iteration. With a bit of binary arithmetic magic, we can reduce it to
loop only for the number of bits that are “set”. That is, the following function
iterates only once if the input value has only one bit set:

Listing: improved bitcount function

bitcount(set)

{

new count = 0

if (set)

do

count++

while ((set = set & (set - 1)))

return count

}

A tutorial introduction / 25

• A simple RPN calculator

The common mathematical notation, with expressions like “26− 3× (5 + 2)”, is
Algebraic nota-
tion is also called
“infix” notation

known as the algebraic notation. It is a compact notation and we have grown
accustomed to it. Small and by far most other programming languages use the
algebraic notation for their programming expressions. The algebraic notation
does have a few disadvantages, though. For instance, it occasionally requires that
the order of operations is made explicit by folding a part of the expression in
parantheses. The expression at the top of this paragraph can be rewritten to
elimit the parantheses, but at the cost of nearly doubling its length. In prac-
tice, the algebraic notation is augmented with precedence level rules that say, for
example, that multiplication goes before addition and subtraction.∗ Precedence
levels greatly reduce the need for parentheses, but it does not fully avoid them.
Worse is that when the number of operators grows large, the hierarchy of prece-
dence levels and the particular precedence level for each operator becomes hard
to memorize —which is why an operator-rich language as APL does away with
precedence levels altogether.

Around 1920, the Polish mathematician Jan Ĺukasiewicz showed that by putting
the operators in front of their operands, instead of between them, precedence
levels became redundant and parantheses were never necessary. This notation
became known as the “Polish Notation”.† Charles Hamblin proposed later to

Reverse Polish
Notation is also
called “postfix”
notation

put operators behind the operands, calling it the “Reverse Polish Notation”. The
advantage of reversing the order is that the operators are listed in the same order
as they must be executed: when reading the operators from the left to the right,
you also have the operations to perform in that order. The algebraic expression
from the beginning of this section would read in rpn as:

26 3 5 2 + × −
When looking at the operators only, we have: first an addition, then a multiplica-
tion and finally a subtraction. The operands of each operator are read from right
to left: the operands for the + operator are the values 5 and 2, those for the ×
operator are the result of the previous addition and the value 3, and so on.

It is helpful to imagine the values to be stacked on a pile, where the operators

∗
These rules are often summarized in a mnemonic like “Please Excuse My Dear Aunt Sally”

(Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction.

†
Polish Notation is completely unrelated to “Hungarian Notation” —which is just the habit of

adding “type” or “purpose” identification warts to names of variables or functions.

26 . A tutorial introduction

take one or more operands from the top of the pile and put a result back on top of
the pile. When reading through the rpn expression, the values 26, 3, 5 and 2 are
“stacked” in that order. The operator + removes the top two elements from the
stack (5 and 2) and pushes the sum of these values back —the stack now reads
“26 3 7”. Then, the × operator removes 3 and 7 and pushes the product of the
values onto the stack —the stack is “26 21”. Finally, the − operator subtracts 21
from 26 and stores the single value 5, the end result of the expression, back onto
the stack.

Reverse Polish Notation became popular because it was easy to understand and
easy to implement in (early) calculators. It also opens the way to operators with
more than two operands (e.g. integration) or operators with more than one result
(e.g. conversion between polar and cartesian coordinates).

The main program for a Reverse Polish Notation calculator is below:

Listing: rpn.sma

/* a simple RPN calculator */

#include strtok

#include stack

#include rpnparse

main()

{

print "Type an expression in Reverse Polish Notation: "

new string[100]

getstring string, sizeof string

rpncalc string

}

The main program contains very little code itself; instead it includes the re-
quired code from three other files, each of which implements a few functions that,
together, build the rpn calculator. When programs or scripts get larger, it is
usually advised to spread the implementation over several files, in order to make
maintenance easier.

Function main first puts up a promt and calls the native function getstring to
read an expression that the user types. Then it calls the custom function rpncalc

to do the real work. Function rpncalc is implemented in the file rpnparse.inc,
reproduced below:

Listing: rpnparse.inc

/* main rpn parser and lexical analysis, part of the RPN calculator */

#include <rational>

A tutorial introduction / 27

enum token

{

t_type, /* operator or token type */

Rational: t_value, /* value, if t_type is "Number" */

t_word[20], /* raw string */

}

const Number = ’0’

const EndOfExpr = ’#’

rpncalc(const string[])

{

new index

new field[token]

for (;;)

{

field = gettoken(string, index)

switch (field[t_type])

{

case Number:

push field[t_value]

case ’+’:

push pop() + pop()

case ’-’:

push - pop() + pop()

case ’*’:

push pop() * pop()

case ’/’, ’:’:

push 1.0 / pop() * pop()

case EndOfExpr:

break /* exit "for" loop */

default:

printf "Unknown operator ’%s’\n", field[t_word]

}

}

printf "Result = %r\n", pop()

if (clearstack())

print "Stack not empty\n", red

}

gettoken(const string[], &index)

{

/* first get the next "word" from the string */

new word[20]

word = strtok(string, index)

/* then parse it */

new field[token]

field[t_word] = word

if (strlen(word) == 0)

{

field[t_type] = EndOfExpr /* special "stop" symbol */

28 . A tutorial introduction

field[t_value] = 0

}

else if (’0’ <= word[0] <= ’9’)

{

field[t_type] = Number

field[t_value] = rationalstr(word)

}

else

{

field[t_type] = word[0]

field[t_value] = 0

}

return field

}

The rpn calculator uses rational number support and rpnparse.inc includes the
Rational num-
bers, see also
the “Celsius to
Fahrenheit” ex-
ample on page
page 13

“rational” file for that purpose. Almost all of the operations on rational numbers
is hidden in the arithmetic. The only direct references to rational numbers are the
“%r” format code in the printf statement near the bottom of function rpncalc

and the call to rationalstr halfway function gettoken.

The first remarkable element in the file rpnparse.inc is the enum declaration,
“enum” state-
ment: 79

where one element has a tag (t_field) and the other element has a size (t_word).
Function rpncalc declares variable field as an array using the enumaration
symbol as its size. Behind the screens, this declaration does more than just create
an array with 22 cells:

� The index tag of the array is set to the tag name “token:”. This means that
Another example
of an index tag:
page 46

you can index the array with any of the elements from the enumeration, but
not with values that have a different tag. In other words, field[t_type] is
okay, but field[1] gives a parser diagnostic.

� The tag name of the enumeration overrules the tag name of the array variable,
if any. The field variable is untagged, but field[t_value] has the tag Ra-

tional:, because the enumeration element t_value is declared as such. This,
hence, allows you to create an array whose elements have different tag names.

� When the enumeration element has a size, the array element indicated with
that element is sometimes treated as a sub-array. In rpncalc, field[t_type]
is a single cell, field[t_value] is a single cell, but field[t_word] is a one-
dimensional array of 20 cells. We see that specifically in the line:

printf "Unknown operator ’%s’\n", field[t_word]

where the format code %s expects a string —a zero-terminated array.

If you know C/C++ or Java, you may want to look at the switch statement.
“switch” state-
ment: page 91

The switch statement differs in a number of ways from the other languages that

A tutorial introduction / 29

provide it. The cases are not fall-through, for example, which in turn means that
the break statement for the case EndOfExpr breaks out of the enclosing loop,
instead of out of the switch.

On the top of the for loop in function rpncalc, you will find the instruc-
tion “field = gettoken(string, index)”. As already exemplified in the
wcount.sma (“word count”) program on page 16, functions may return arrays.
It gets more interesting for a similar line in function gettoken:

field[t_word] = word

where word is an array of 20 cells and field is an array of 22 cells. However, as the
t_word enumeration field is declared as having a size of 20 cells, “field[t_word]”
is considered a sub-array of 20 cells, precisely matching the array size of word.

Listing: strtok.inc

/* extract words from a string (words must be separated by white space) */

strtok(const string[], &index)

{

new length = strlen(string)

/* skip leading white space */

while (index < length && string[index] <= ’ ’)

index++

/* store the word letter for letter */

new offset = index /* save start position of token */

new result[20] /* string to store the word in */

while (index < length

&& string[index] > ’ ’

&& index - offset < sizeof result - 1)

{

result[index - offset] = string[index]

index++

}

result[index - offset] = EOS /* zero-terminate the string */

return result

}

Function strtok is the same as the one used in the wcount.sma example. It is
wcount.sma:
page 16implemented in a separate file for the rpn calculator program. Note that the

strtok function as it is implemented here can only handle words with up to 19
characters —the 20th character is the zero terminator. A truly general purpose
re-usable implementation of an strtok function would pass the destination array
as a parameter, so that it could handle words of any size. Supporting both packed
and unpack strings would also be a useful feature of a general purpose function.

When discussing the merits of Reverse Polish Notation, I mentioned that a stack
is both an aid in “visualizing” the algorithm as well as a convenient method to

30 . A tutorial introduction

implement an rpn parser. This example rpn calculator, uses a stack with the
ubiquitous functions push and pop. For error checking and resetting the stack,
there is a third function that clears the stack.

Listing: stack.inc

/* stack functions, part of the RPN calculator */

#include <rational>

static Rational: stack[50]

static stackidx = 0

push(Rational: value)

{

assert stackidx < sizeof stack

stack[stackidx++] = value

}

Rational: pop()

{

assert stackidx > 0

return stack[--stackidx]

}

clearstack()

{

assert stackidx >= 0

if (stackidx == 0)

return false

stackidx = 0

return true

}

The file stack.inc includes the file rational again. This is technically not
necessary (rpnparse.inc already included the definitions for rational number
support), but it does not do any harm either and, for the sake of code re-use, it is
better to make any file include the definitions of the libraries that it depends on.

Notice how the two global variables stack and stackidx are declared as “static”
variables; using the keyword static instead of new. Doing this makes the global
variables “visible” in that file only. For all other files in a larger project, the sym-
bols stack and stackidx are invisible and they cannot (accidentally) modify the
variables. It also allows the other modules to declare their own private variables
with these names, so it avoids name clashing.

The rpn calculator is actually still a fairly small program, but it has been set up as
if it were a larger program. It was also designed to demonstrate a set of elements
of the Small language and the example program could have been implemented
more compactly.

A tutorial introduction / 31

• Program verification

Should the compiler/interpreter not catch all bugs? This issue has both technical
and philosophical sides. I will forego all non-technical aspects and only mention
that, in practice, there is a tradeoff between the “expressiveness” of a computer
language and the “enforced correctness” (or “proveable correctness’) of programs
in that language. Making a language very “strict” is not a solution if work needs
to be done that exceeds the size of a toy program. A too strict language leaves
the programmer struggling with the language, whereas a language is supposed to
be a simple means to express algorithms in.

The goal of the Small language is to provide the developer with an informal,
and convenient to use, mechanism to test whether the program behaves as was
intended. This mechanism is called “assertions” and, although the concept of
assertions predates the idea of “design by contract”, it is most easily explained
through the idea of “design by contract”.

The “design by contract” paradigm provides an alternative approach for dealing
with erroneous conditions. The premise is that the programmer knows the task at
hand, the conditions under which the software must operate and the environment.
In such an environment, each function specifies the specific conditions, in the form
of assertions , that must hold true before a client may execute the function. In
addition, the function may also specify any conditions that hold true after it
completes its operation. This is the “contract” of the function.

The name “design by contract” was coined by Bertrand Meyer and its principles
trace back to predicate logic and algorithmic analysis.

� Preconditions specify the valid values of the input parameters and environmen-
tal attributes;

� Postconditions specify the output and the (possibly modified) environment;

� Invariants indicate the conditions that must hold true at key points in a func-
tion, regardless of the path taken through the function.

For example, a function that computes a square root of a number may specify that
its input parameter be non-negative. This is a precondition. It may also specify
that its output, when squared, is the input value ±0.01%. This is a postcondition;
it verifies that the routine operated correctly. A convenient way to calculate a

Example square
root function
(using bisection’:
58

square root is via “bisection”. At each iteration, this algorithm gives at least one
extra bit (binary digit) of accuracy. This is an invariant (it might be an invariant
that is hard to check, though).

32 . A tutorial introduction

Preconditions, postconditions and invariants are similar in the sense that they all
consist of a test and that a failed test indicates an error in the implementation.
As a result, you can implement preconditions, postconditions and invariants with
a single construct: the “assertion”. For preconditions, write assertions at the very
start of the routine; for invariants, write an assertion where the invariant should
hold; for post conditions, write an assertion before each “return” statement or at
the end of the function.

In Small, the instruction is called assert; it is a simple statement that contains a
test. If the test outcome is ”true”, nothing happens. If the outcome is ”false”, the
assert instruction terminates the program with a message containing the details
of the assertion that failed.

Assertions are checks that should never fail. Genuine errors, such as user input
errors, should be handled with explicit tests in the program, and not with asser-
tions. As a rule, the expressions contained in assertions should be free of side
effects: an assertion should never contain code that your application requires for
correct operation.

This does have the effect, however, that assertions never fire in a bug-free program:
they just make the code fatter and slower , without any user-visible benefit. It is
not this bad, though. An additional feature of assertions is that you can build the
source code without assertions simply using a flag or option to the Small parser.
The idea is that you enable assertions during development and build the “retail
version” of the code without assertions. This is a better approach than removing
the assertions, because all assertions are automatically “back” when recompiling
the program —e.g. for maintenance.

During maintenance, or even during the initial development, if you catch a bug
that was not trapped by an assertion, before fixing the bug, you should think of
how an assertion could have trapped this error. Then, add this assertion and test
whether it indeed catches the bug before fixing the bug. By doing this, the code
will gradually become sturdier and more reliable.

• Documentation comments

When programs become larger, documenting the program and the functions be-
comes vital for its maintenance, especially when working in a team. The Small

language tools have some features to assist you in documenting the code in com-
ments. Documenting a program or library in its comments has a few advantages
—for example: documentation is more easily kept up to date with the program, it

A tutorial introduction / 33

is efficient in the sense that programming comments now double as documentation,
and the parser helps your documentation efforts in generating syntax descriptions
and cross references.

Every comment that starts with three slashes (“/// ”) followed by whitespace, or
Comment syn-
tax: 75

that starts with a slash and two stars (“/** ”) followed by whitespace is a special
documentation comment. The Small compiler extracts documentation comments
and optionally writes these to a “report” file. See the application documentation,
or appendix B, how to enable the report generation.

As an aside, comments that start with “/**” must still be closed with “*/”. Single
line documentation comments (“///”) close at the end of the line.

The report file is an XML file that can subsequently be transformed to HTML
documentation via an XSL/XSLT stylesheet, or be run through other tools to
create printed documentation. The syntax of the report file is compatible with
that of the “.Net” developer products —except that the Small compiler stores
more information in the report than just the extracted documentation strings.
The report file contains a reference to the “smalldoc.xsl” stylesheet.

The example below illustrates documentation comments in a simple script that
has a few functions. You may write documentation comments for a function above
its declaration or in its body. All documentation comments that appear before
the end of the function are attributed to the function. You can also add documen-
tation comments to global variables and global constants —these comments must
appear above the declaration of the variable or constant. Figure 1 shows part of
the output for this (rather long) example. The style of the output is adjustable
in the cascading style sheet (CSS-file) associated with the XSLT transformation
file.

Listing: weekday.sma

/**

* This program illustrates Zeller’s congruence algorithm to calculate

* the day of the week given a date.

*/

/**

* <summary>

* The main program: asks the user to input a date and prints on what day

* of the week that date falls.

* </summary>

*/

main()

{

new day, month, year

if (readdate(day, month, year))

34 . A tutorial introduction

{

new wkday = weekday(day, month, year)

printf "The date %d-%d-%d falls on a ", day, month, year

switch (wkday)

{

case 0:

print "Saturday"

case 1:

print "Sunday"

case 2:

print "Monday"

case 3:

print "Tuesday"

case 4:

print "Wednesday"

case 5:

print "Thursday"

case 6:

print "Friday"

}

}

else

print "Invalid date"

print "\n"

}

/**

* <summary>

* The core function of Zeller’s congruence algorithm. The function

* works for the Gregorian calender.

* </summary>

*

* <param name="day">

* The day in the month, a value between 1 and 31.

* </param>

* <param name="month">

* The month: a value between 1 and 12.

* </param>

* <param name="year">

* The year in four digits.

* </param>

*

* <returns>

* The day of the week, where 0 is Saturday and 6 is Friday.

* </returns>

*

* <remarks>

* This function does not check the validity of the date; when the date in

* the parameters is invalid, the returned "day of the week" will hold an

* incorrect value.

* </remarks>

A tutorial introduction / 35

*/

weekday(day, month, year)

{

/**

* <remarks>

* For Zeller’s congruence algorithm, the months January and

* February are the 13th and 14th month of the preceding

* year. The idea is that the "difficult month" February (which

* has either 28 or 29 days) is moved to the end of the year.

* </remarks>

*/

if (month <= 2)

month += 12, --year

new j = year % 100

new e = year / 100

return (day + (month+1)*26/10 + j + j/4 + e/4 - 2*e) % 7

}

/**

* <summary>

* Reads a date and stores it in three separate fields. tata

* </summary>

*

* <param name="day">

* Will hold the day number upon return.

* </param>

* <param name="month">

* Will hold the month number upon return.

* </param>

* <param name="year">

* Will hold the year number upon return.

* </param>

*

* <returns>

* true if the date is valid, false otherwise; if the

* function returns false, the values of <paramref name="day"/>,

* <paramref name="month"/> and <paramref name="year"/> cannot be relied

* upon.

* </returns>

*/

bool: readdate(&day, &month, &year)

{

print "Give a date (dd-mm-yyyy): "

day = getvalue(_,’-’,’/’)

month = getvalue(_,’-’,’/’)

year = getvalue()

return 1 <= month <= 12 && 1 <= day <= daysinmonth(month,year)

}

/**

* <summary>

* Returns whether a year is a leap year.

36 . A tutorial introduction

* </summary>

*

* <param name="year">

* The year in 4 digits.

* </param>

*

* <remarks>

* A year is a leap year:

*

* if it is divisable by 4,

* but not if it is divisable by 100,

* but it is it is divisable by 400.

*

* </remarks>

*/

bool: isleapyear(year)

return year % 400 == 0 || year % 100 != 0 && year % 4 == 0

/**

* <summary>

* Returns the number of days in a month (the month is an integer

* in the range 1 .. 12). One needs to pass in the year as well,

* because the function takes leap years into account.

* </summary>

*

* <param name="month">

* The month number, a value between 1 and 12.

* </param>

* <param name="year">

* The year in 4 digits.

* </param>

*/

daysinmonth(month, year)

{

static daylist[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

assert 1 <= month <= 12

return daylist[month-1] + _:(month == 2 && isleapyear(year))

}

The format of the XML file created by “.Net” developer products is documented in
the Microsoft documentation. The Small parser creates a minimal description of
each function or global variable or constant that is used in a project, regardless of
whether you used documentation comments on that function/variable/constant.
The parser also generates few tags of its own:
attribute Attributes for a function, such as “native” or “stock”.

param Function parameters. When you add a parameter description in
a documentation comment, this description is combined with the
auto-generated content for the parameter.

paraminfo Tags and array or reference information on a parameter.

A tutorial introduction / 37

Figure 1: Documentation generated from the source code

referrer All functions that refer to this symbol; i.e., all functions that use or
call this variable/function.

stacksize The estimated number of cells that the function will allocate on the
stack and heap.

tagname The tag of the constant, variable, function result or function param-
eter(s).

All text in the documentation comment(s) is also copied to each function, variable
or constant to which it is attached. The text in the documentation comment is
copied without further processing —with one exception, see below. As the rest of
the report file is in XML format, and the most suitable way to process XML to on-
line documentation is through an XSLT processor (such as a modern browser), you
may choose to do any formatting in the documentation comments using HTML
tags. Note that you will often need to explicitly close any HTML tags; the HTML

38 . A tutorial introduction

standard does not require this, but XML/XSLT processors usually do. The Small

toolkit comes with an example XSLT file (with a matching style sheet) which
supports the following XML/HTML tags:

<code> </code> Preformatted (source) code in a monospaced
font; although the “&”, “¡” and “¿” must be
typed as “&”, “<” and “&rt;” respec-
tively.

<example> </example> Text set under the sub-header “Example”.

<param name="..."> </param> A parameter description, with the parameter
name appearing inside the opening tag (the
“name=” option) and the parameter description
following it.

<paramref name="..." /> A reference to a parameter, with the parame-
ter name appearing inside the opening tag (the
“name=” option).

<remarks> </remarks> Text set under the sub-header “Remarks”.

<returns> </returns> Text set under the sub-header “Returns”.

<seealso> </seealso> Text set under the sub-header “See also”.

<summary> </summary> Text set immediately below the header of the
symbol.

<section> </section> Sets the text in a header. This should only be
used in documentation that is not attached to
a function or a variable.

<subsection> </subsection> Sets the text in a sub-header. This should only
be used in documentation that is not attached
to a function or a variable.

The following additional HTML tags are supported for general purpose formatting
text inside any of the above sections:

<c> </c> Text set in a monospaced font.

 Text set emphasized, usually in italics.

<p> </p> Text set in a new paragraph. Instead of wrapping <p> and
</p> around every paragraph, inserting <p/> as a separa-
tor between two paragraphs produces the same effect.

<para> </para> An alternative for <p> </p>

 An unordered (bulleted) list.

 An ordered (numbered) list.

A tutorial introduction / 39

 An item in an ordered or unordered list.

As stated, there is one exception in the processing of documentation comments:
if your documentation comment contains a <param ...> tag (and a matching
</param>), the Small parser looks up the parameter and combines your descrip-
tion of the parameter with the contents that it has automatically generated.

• Warnings and errors

The big hurdle that I have stepped over is how to actually compile the code
snippets presented in this chapter. The reason is that the procedure depends on
the system that you are using: in some applications there is a “Make” or “Compile

script” command button or menu option, while in other environments you have
to type a command like “sc myscript” on a command prompt. If you are using
the standard Small toolset, you will find instructions of how to use the compiler
and run-time in the companion booklet “The Small booklet — Implementor’s
Guide”.

Regardless of the differences in launching the compile, the phenomenon that re-
sults from launching the compile are likely to be very similar between all systems:

� either the compile succeeds and produces an executable program —that may
or may not run automatically after the compile;

� or the compile gives a list of warning and error messages.

Mistakes happen and the Small parser tries to catch as many of them as it can.
When you inspect the code that the Small parser complains about, it may on
occasion be rather difficult for you to see why the code is erroneous (or suspicious).
The following hints may help:

� Each error or warning number is numbered. You can look up the error message
with this number in appendix A, along with a brief description on what the
message really means.

� If the Small parser produces a list of errors, the first error in this list is a true
error, but the diagnistic messages below it may not be errors at all.

After the Small parser sees an error, it tries to step over it and complete
the compilation. However, the stumbling on the error may have confused the
Small parser so that subsequent legitimate statements are misinterpreted and
reported as errors too.

When in doubt, fix the first error and recompile.

40 . A tutorial introduction

� The Small parser checks only the syntax (spelling/grammar), not the seman-
tics (i.e. the “meaning”) of the code. When it detects code that does not comply
to the syntactical rules, there may actually be different ways in which the code
can be changed to be “correct”, in the syntactical sense of the word —even
though many of these “corrections” would lead to non-sensical code. The re-
sult is, though, that the Small parser may have difficulty to precisely locate
the error: it does not know what you meant to write. Hence, the parser often
outputs two line numbers and the error is somewhere in the range (between the
line numbers).

� Remember that a program that has no syntactical errors (the Small parser
accepts it without error & warning messages) may still have semantical and
logical errors which the Small parser cannot catch. The assert instruction
(page 89) is meant to help you catch these “run-time” errors.

• In closing

If you know the C programming language, you will have seen many concepts that
you are familiar with, and a few new ones. If you don’t know C, the pace of
this introduction has probably been quite high. Whether you are new to C or
experienced in C, I encourage you to read the following pages carefully. If you
know C or a C-like language, by the way, you may want to consult the chapter
“Pitfalls” (page 106) first.

This booklet attempts to be both an informal introduction and a (more formal)
language specification at the same time, perhaps succeeding at neither. Since it is
also the standard book on Small,∗ the focus of this booklet is on being accurate
and complete, rather than being easy to grasp.

The double nature of this booklet shows through in the order in which it presents
the subjects. The larger conceptual parts of the language, variables and functions,
are covered first. The operators, the statements and general syntax rules follow
later —not that they are less important, but they are easier to learn, to look up,
or to take for granted.

∗
It is no longer the only book on Small.

41

Data and declarations

Small is a typeless language. All data elements are of type “cell”, and a cell
can hold an integral number. The size of a cell (in bytes) is system dependent
—usually, a cell is 32-bits.

The keyword new declares a new variable. For special declarations, the keyword
new is replaced by static, public or stock (see below). A simple variable dec-
laration creates a variable that occupies one “cell” of data memory. Unless it is
explicitly initialized, the value of the new variable is zero.

A variable declaration may occur:
� at any position where a statement would be valid —local variables;
� at any position where a function declaration (native function declarations) or

a function implementation would be valid —global variables;
� in the first expression of a for loop instruction —also local variables. “for” loop: 90

Local declarations
A local declaration appears inside a compound statement. A local variable

Compound state-
ment: 89can only be accessed from within the compound statement, and from

nested compound statements. A declaration in the first expression of a
for loop instruction is also a local declaration.

Global declarations
A global declaration appears outside a function and a global variable is
accessible to any function. Global data objects can only be initialized
with constant expressions.

• Static local declarations

A local variable is destroyed when the execution leaves the compound block in
which the variable was created. Local variables in a function only exist during
the run time of that function. Each new run of the function creates and initializes
new local variables. When a local variable is declared with the keyword static

rather than new, the variable remains in existence after the end of a function.
This means that static local variables provide private, permanent storage that is
accessible only from a single function (or compound block). Like global variables,
static local variables can only be initialized with constant expressions.

42 . Data and declarations

• Static global declarations

A static global variable behaves the same as a normal global variable, except that
its scope is restricted to the file that the declaration resides in. To declare a global
variable as static, replace the keyword new by static.

• Stock declarations

A global variable may be declared as “stock”. A stock declaration is one that
Stock functions:
63 the parser may remove or ignore if the variable turns out not to be used in the

program. Stock variables are useful in combination with stock functions.

• Public declarations

Global “simple” variables (no arrays) may be declared “public” in two ways:
� declare the variable using the keyword public instead of new;
� start the variable name with the “@” symbol.

Public variables behave like global variables, with the addition that the host
program can also read and write public variables. A (normal) global variable can
only be accessed by the functions in your script —the host program is unaware
of them. As such, a host program may require that you declare a variable with
a specific name as “public” for special purposes —such as the most recent error
number, or the general program state.

• Constant variables

It is sometimes convenient to be able to create a variable that is initialized once
Symbolic con-
stants: 79 and that may not be modified. Such a variable behaves much like a symbolic

constant, but it still is a variable.

To declare a constant variable, insert the keyword const between the keyword
that starts the variable declaration —new, static, public or stock— and the
variable name.

Examples:

new const address[4] = { 192, 0, 168, 66 }

public const status /* initialized to zero */

Three typical situations where one may use a constant variable are:
� To create an “array” constant; symbolic constants cannot be indexed.

Data and declarations / 43

� For a public variable that should be set by the host application, and only by
the host application. See the preceding section for public variables.

� A special case is to mark array arguments to functions as const. Array argu-
ments are always passed by reference, declaring them as const guards against
unintentional modification. Refer to page 51 for an example of const function
arguments.

• Arrays (single dimension)

The syntax name[constant] declares name to be an array of “constant” elements,
See also “multi-
dimensional ar-
rays”, page 44

where each element is a single cell. The name is a placeholder of an identifier
name of your choosing and constant is a positive non-zero value; constant may
be absent. If there is no value between the brackets, the number of elements is
set equal to the number of initiallers —see the example below.

The array index range is “zero based” which means that the first element is at
name[0] and the last element is name[constant-1].

• Initialization

Data objects can be initialized at their declaration. The initialler of a global data
Constants: 76

object must be a constant. Arrays, global or local, must also be initialized with
constants.

Uninitialized data defaults to zero.

Examples:

Listing: good declaration

new i = 1

new j /* j is zero */

new k = ’a’ /* k has character code for letter ’a’ */

new a[] = {1,4,9,16,25} /* a has 5 elements */

new s1[20] = {’a’,’b’} /* the other 18 elements are 0 */

new s2[] = "Hello world..." /* a unpacked string */

Examples of invalid declarations:

Listing: bad declarations

new c[3] = 4 /* an array cannot be set to a value */

new i = "Good-bye" /* i must be an array for this initialler */

new q[] /* unknown size of array */

new p[2] = { i + j, k - 3 } /* array initiallers must be constants */

44 . Data and declarations

• Progressive initiallers for arrays

The ellipsis operator continues the progression of the initialisation constants for
an array, based on the last two initialized elements. The ellipsis operator (three
dots, or “...”) initializes the array up to its declared size.

Examples:

Listing: array initializers

new a[10] = { 1, ... } /* sets all ten elements to 1 */

new b[10] = { 1, 2, ... } /* sets: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 */

new c[8] = { 1, 2, 40, 50, ... } /* sets: 1, 2, 40, 50, 60, 70, 80, 90 */

new d[10] = { 10, 9, ... } /* sets: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 */

• array initialization and enumerations

The array size may be set with a constant that represents an enumeration: an
example of this is the “priority queue” sample program at page 18. When in-
dividual fields of the enumeration have a size, the associated array elements are
interpreted as sub-arrays, on occasion. For an example of this behavior, see the
rpn calculator program at page 26.

The sub-array syntax applies as well to the initialization of an “enumerated” array.
Referring again to the “priority queue” sample program, to initialize a “message”
array with fixed values, the syntax is:

Listing: array initializers

enum message /* declaration copied from "QUEUE.SMA" */

{

text[40 char],

priority

}

new msg[message] = { !"new message", 1 }

The initialler consists of a string (a litteral array) and a value; these go into the
fields “text” and “priority” respectively.

• Multi-dimensional arrays

Multi-dimensional arrays are arrays that contain references to the sub-arrays.∗

That is, a two-dimensional array is an “array of single-dimensional arrays”. Below
are a few examples of declarations of two-dimensional arrays.

∗
The current implementation of the SMALL compiler supports only arrays with up to two di-

mensions.

Data and declarations / 45

Listing: Two-dimensional arrays

new a[4][3]

new b[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }

new c[3][3] = { { 1 }, { 2, ...}, { 3, 4, ... } }

new d[2][5] = { !"agreement", !"dispute" }

new e[2][] = { "OK", "Cancel" }

new f[][] = { "OK", "Cancel" }

As the last two declarations (variable “e” en “f”) show, the final dimension of an
array may have an unspecified length, in which case the length of each sub-array
is determined from the related initializer. Every sub-array may have a different
size; in this particular example, “e[1][5]” contains the letter ”l” from the word
“Cancel”, but “e[0][5]” is invalid because the length of the sub-array “e[0]” is
only three cells (containing the letters “O”, “K” and a zero terminator).

The difference between the declarations for arrays “e” and “f” is that in we let
the compiler count the number of initializers for the major dimension —“sizeof
f” is 2, like “sizeof e” (see the next section on the sizeof operator).

• Arrays and the sizeof operator

The sizeof operator returns the size of a variable in “elements”. For a simple
(non-compound) variable, the result of sizeof is always 1, because an element is a
cell for a simple variable.

An array with one dimension holds a number of cells and the sizeof operator
returns that number. The snippet below would therefore print “5” at the display,
because the array “msg” holds four characters (each in one cell) plus a zero-
terminator:

Listing: sizeof operator

new msg[] = "Help"

printf("%d", sizeof msg);

With multi-dimensional arrays, the sizeof operator can return the number of
elements in each dimension. For the last (minor) dimension, an element will
again be a cell, but for the major dimension(s), an element is a sub-array. In
the following code snippet, observe that the syntax sizeof matrix refers to the
major dimension of the two-dimensional array and the syntax sizeof matrix[]

refers to the minor dimension of the array. The values that this snippet prints
are 3 and 2 (for the major and minor dimensions respectively):

46 . Data and declarations

Listing: sizeof operator and multidimensional arrays

new matrix[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }

printf("%d %d", sizeof matrix, sizeof matrix[]);

The application of the sizeof operator on multi-dimensional arrays is especiallyDefault function
arguments and
sizeof: 55 convenient when used as a default value for function arguments.

• Tag names

A tag is a label that denotes the objective of —or the meaning of— a variable,
a constant or a function result. Tags are optional, their only purpose is to allow
a stronger compile-time error checking of operands in expressions, of function
arguments and of array indices.

A tag consists of a symbol name followed by a colon; it has the same syntax as a
Label syntax: 89

label. A tag precedes the symbol name of a variable, constant or function. In an
assignment, only the right hand of the “=” sign may be tagged.

Examples of valid tagged variable and constant definitions are:

Listing: tag names

new bool:flag = true /* "flag" can only hold "true" or "false" */

const error:success = 0

const error:fatal= 1

const error:nonfatal = 2

error:errno = fatal

The sequence of the constants success, fatal and nonfatal could more conve-
“enum” state-
ment: 79 niently be declared using an enum instruction, as illustrated below. The enumer-

ation instruction below creates four constants, success, fatal, nonfatal and
error, all with the tag error.

Listing: enumerations

enum error {

success,

fatal,

nonfatal,

}

A typical use of “tagged” enum’s is in conjunction with arrays. If every field of an
array has a distinct purpose, you can use a tagged enum to declare the size of an
array and to add tag checking to the array usage in a single step:

Data and declarations / 47

Listing: enumerations and arrays

enum rectangle

{

left,

top,

right,

bottom

}

new my_rect[rectangle] /* array is declared as having 4 cells */

my_rect[left] = 10

my_rect[top] = 5

my_rect[right] = 30

my_rect[bottom] = 12

for (new i = 0; rectangle:i < rectangle; ++i)

my_rect[rectangle:i] *= 2

After the declaration of “my_rect” above, you can access the second field of
my_rect with “my_rect[top]”, but saying “my_rect[1]” will give a parser di-
agnostic (a warning or error message). A tag override (or a tag cast) adjusts a
function, constant or variable to the desired tag name. The for loop at the last
two lines in the preceding example depicts this: the loop variable i is a plain,
untagged cell, an it must be cast to the tag rectangle before using it as an index
in the array my_rect. Note that the enum construct has created both a constant
and a tag with the name “rectangle”.

Tag names intruduced so far started with a lower case letter; these are “weak”
tags. Tag names that start with an upper case letter are “strong” tags. The
difference between weak and strong tags is that weak tags may, in a few circum-
stances, be dropped implicitly by the Small parser —so that a weakly tagged
expression becomes an untagged expression. The tag checking mechanism verifies
the following situations:

� When the expressions on both sides of a binary operator have a different tag, or
when one of the expressions is tagged and the other is not, the compiler issues
a “tag mismatch” diagnostic. There is no difference between weak and strong
tags in this situation.

� There is a special case for the assignment operator: the compiler issues a di-
“lvalue”: the
variable on the
left side in an
assigment, see
page 82

agnostic if the variable on the left side of an assignment operator has a tag,
and the expression on the right side either has a different tag or is untagged.
However, if the variable on the left of the assignment operator is untagged, it
accepts an expression (on the right side) with a weak tag. In other words, a
weak tag is dropped in an assignment when the lvalue is untagged.

48 . Data and declarations

� Passing arguments to functions follows the rule for assignments. The compiler
issues a diagnostic when the formal parameter (in a function definition) has a
tag and the actual parameter (in the function call) either is untagged or has a
different tag. However, if the formal parameter is untagged, it also accepts a
parameter with any weak tag.

� An array may specify a tag for every dimension, see the “my_rect” example
above. Tag checking array indices follows the rule of binary operator tag check-
ing: there is no difference between weak and strong tags.

49

Functions

A function declaration specifies the name of the function and, between paren-
theses, its formal parameters. A function may also return a value. A function
declaration must appear on a global level (i.e. outside any other functions) and is
globally accessible.

If a semicolon follows the function declaration (rather than a statement), the The preferred
way to declare
forward functions
is at page 61

declaration denotes a forward declaration of the function.

The return statement sets the function result. For example, function sum (see
below) has as its result the value of both its arguments added together. The
return expression is optional for a function, but one cannot use the value of a
function that does not return a value.

Listing: sum function

sum(a, b)

return a + b

Arguments of a function are (implicitly declared) local variables for that function.
The function call determines the values of the arguments.

Another example of a complete definition of the function leapyear (which returns
true for a leap year and false for a non-leap year):

Listing: leapyear function

leapyear(y)

return y % 4 == 0 && y % 100 != 0 || y % 400 == 0

The logical and arithmetic operators used in the leapyear example are covered
on pages 85 and 82 respectively.

Usually a function contains local variable declarations and consists of a compound
“assert” state-
ment: 89statement. In the following example, note the assert statement to guard against

negative values for the exponent.

Listing: power function (raise to a power)

power(x, y)

{

/* returns x raised to the power of y */

assert y >= 0

new r = 1

for (new i = 0; i < y; i++)

r *= x

return r

}

50 . Functions

A function may contain multiple return statements —one usually does this to
quickly exit a function on a parameter error or when it turns out that the function
has nothing to do. If a function returns an array, all return statements must
specify an array with the same size and the same dimensions.

• Function arguments (call-by-value versus call-by-reference)

The “faculty” function in the next program has one parameter which it uses in
Another exam-
ple is function
JulianToDate at
page 10

a loop to calculate the faculty of that number. What deserves attention is that
the function modifies its argument.

Listing: faculty.sma

/* Calculation of the faculty of a value */

main()

{

print "Enter a value: "

new v = getvalue()

new f = faculty(v)

printf "The faculty of %d is %d\n", v, f

}

faculty(n)

{

assert n >= 0

new result = 1

while (n > 0)

result *= n--

return result

}

Whatever (positive) value that “n” had at the entry of the while loop in function
faculty, “n” will be zero at the end of the loop. In the case of the faculty

function, the parameter is passed “by value”, so the change of “n” is local to the
faculty function. In other words, function main passes “v” as input to function
faculty, but upon return of faculty, “v” still has the same value as before the
function call.

Arguments that occupy a single cell can be passed by value or by reference. The
default is “pass by value”. To create a function argument that is passed by
reference, prefix the argument name with the character &.

Example:

Functions / 51

Listing: swap function

swap(&a, &b)

{

new temp = b

b = a

a = temp

}

To pass an array to a function, append a pair of brackets to the argument name.
You may optionally indicate the size of the array; doing so improves error checking
of the parser.

Example:

Listing: addvector function

addvector(a[], const b[], size)

{

for (new i = 0; i < size; i++)

a[i] += b[i]

}

Arrays are always passed by reference. As a side note, array b in the above
Constant vari-
ables: 42example does not change in the body of the function. The function argument

has been declared as const to make this explicit. In addition to improving error
checking, it also allows the Small parser to generate more efficient code.

To pass an array of literals to a function, use the same syntax as for array ini-
tiallers: a literal string or the series of array indices enclosed in braces (see page
77; the ellipsis for progressive initiallers cannot be used). Literal arrays can only
have a single dimension.

The following snippet calls addvector to add five to every element of the array
“vect”:

Listing: addvector usage

new vect[3] = { 1, 2, 3 }

addvector(vect, {5, 5, 5}, 3)

/* vect[] now holds the values 6, 7 and 8 */

The invocation of function printf with the string "Hello world\n" in the first
“Hello world”
program: 3

ubiquitous program is another example of passing a literal array to a function.

52 . Functions

• Calling functions

When inserting a function name with its parameters in a statement or expression,
the function will get executed in that statement/expression. The statement that
refers to the function is the “caller” and the function itself, at that point, is the
“callee”: the one being called.

The standard syntax for calling a function is to write the function’s name, fol-
lowed by a list with all explicitly passed parameters between parantheses. If no
parameters are passed, or if the function does not have any, the pair of paranthe-
ses behind the function name are still present. For example, to try out the power

Function power:
49

function, the following program calls it thus:

Listing: example program for the power function

main()

{

print "Please give the base value and the power to raise it to:"

new base = getvalue()

new power = getvalue()

new result = power(base, power)

printf "%d raised to the power %d is %d", base, power, result

}

A function may optionally return a value. The sum, leapyear and power functions
Functions sum &
leapyear: 49
Function swap:
50

all return a value, but the swap function does not. Even if a function returns a
value, the caller may ignore it.

For the situation that the caller ignores the function’s return value, there is an
alternative syntax to call the function, which is also illustrated by the preceding
example program calls the power function. The parantheses around all function
arguments are optional if the caller does not use the return value. In the last
statement, the example program reads

printf "%d raised to the power %d is %d", base, power, result

rather than

printf("%d raised to the power %d is %d", base, power, result)

which does the same thing.

The syntax without parantheses around the parameter list is called the “procedure
call” syntax. You can use it only if:

� the caller does not assign the function’s result to a variable and does not use it
in an expression, or as the “test expression” of an if statement for example;

� the first parameter does not start with an opening paranthesis;

Functions / 53

� the first parameter is on the same line as the function name, unless you use
named parameters (see the next section).

As you may observe, the procedure call syntax applies to cases where a function
call behaves rather as a statement, like in the calls to print and printf in the
preceding example. The syntax is aimed at making such statements appear less
cryptic and friendlier to read, but not that the use of the syntax is optional.

As a side note, all parantheses in the example program presented in this section are
required: the return values of the calls to getvalue are stored in two variables, and
therefore an empty pair of parantheses must follow the function name. Function
getvalue has optional parameters, but none are passed in this example program.

• Named parameters versus positional parameters

In the previous examples, the order of parameters of a function call was impor-
tant, because each parameter is copied to the function argument with the same
sequential position. For example, with the function weekday (which uses Zeller’s
congruence algorithm) defined as below, you call weekday(12,31,1999) to get
the week day of the last day of the preceding century.

Listing: weekday function

weekday(month, day, year)

{

/* returns the day of the week: 0=Saturday, 1=Sunday, etc. */

if (month <= 2)

month += 12, --year

new j = year % 100

new e = year / 100

return (day + (month+1)*26/10 + j + j/4 + e/4 - 2*e) % 7

}

Date formats vary according to culture and nation. While the format month/day/
year is common in the United States of America, European countries often use the
day/month/year format, and technical publications sometimes standardize on the
year/month/day format (ISO/IEC 8824). In other words, no order of arguments
in the weekday function is “logical” or “conventional”. That being the case, the
alternative way to pass parameters to a function is to use “named parameters”,
as in the next examples (the three function calls are equivalent):

Listing: weekday usage —positional parameters

new wkday1 = weekday(.month = 12, .day = 31, .year = 1999)

new wkday2 = weekday(.day = 31, .month = 12, .year = 1999)

new wkday3 = weekday(.year = 1999, .month = 12, .day = 31)

54 . Functions

With named parameters, a period (“.”) precedes the name of the function ar-
gument. The function argument can be set to any expression that is valid for
the argument. The equal sign (“=”) does in the case of a named parameter not
indicate an assignment; rather it links the expression that follows the equal sign
to one of the function arguments.

One may mix positional parameters and named parameters in a function call with
the restriction that all positional parameters must precede any named parameters.

• Default values of function arguments

A function argument may have a default value. The default value for a function
Public functions
do not support
default argument
values; see page
62

argument must be a constant. To specify a default value, append the equal sign
(“=”) and the value to the argument name.

When the function call specifies an argument placeholder instead of a valid ar-
gument, the default value applies. The argument placeholder is the underscore
character (“_”). The argument placeholder is only valid for function arguments
that have a default value.

The rightmost argument placeholders may simply be stripped from the function
argument list. For example, if function increment is defined as:

Listing: increment function —default values

increment(&value, incr=1) value += incr

the following function calls are all equivalent:

Listing: increment usage

increment(a)

increment(a, _)

increment(a, 1)

Default argument values for passed-by-reference arguments are useful to make
the input argument optional. For example, if the function divmod is designed to
return both the quotient and the remainder of a division operation through its
arguments, default values make these arguments optional:

Listing: divmod function —default values for reference parameters

divmod(a, b, "ient=0, &remainder=0)

{

quotient = a / b

remainder = a % b

}

Functions / 55

With the preceding definition of function divmod, the following function calls are
now all valid:

Listing: divmode usage
new p, q

divmod(10, 3, p, q)

divmod(10, 3, p, _)

divmod(10, 3, _, q)

divmod(10, 3, p)

divmod 10, 3, p, q

Default arguments for array arguments are often convenient to set a default string
or prompt to a function that receives a string argument. For example:

Listing: print error function

print_error(const message[], const title[] = "Error: ")

{

print title

print message

print "\n"

}

The next example adds the fields of one array to another array, and by default
increments the first three elements of the destination array by one:

Listing: addvector function, revised

addvector(a[], const b[] = {1, 1, 1}, size = 3)

{

for (new i = 0; i < size; i++)

a[i] += b[i]

}

• sizeof operator & default function arguments

A default value of a function argument must be a constant, and its value is
“sizeof” operator
87determined at the point of the function’s declaration. Using the “sizeof” operator

to set the default value of a function argument is a special case: the calculation of
the value of the sizeof expression is delayed to the point of the function call and
it takes the size of the actual argument rather than that of the formal argument.
When the function is used several times in a program, with different arguments,
the outcome of the “sizeof” expression is potentially different at every call —
which means that the “default value” of the function argument may change.

Below is an example program that draws ten random numbers in the range of
0–51 without duplicates. An example for an application for drawing random

56 . Functions

numbers without duplicates is in card games —those ten numbers could represent
the cards for two “hands” in a poker game. The virtues of the algorithm used in
this program, invented by Robert W. Floyd, are that it is efficient and unbiased
—provided that the pseudo-random number generator is unbiased as well.

Listing: randlist.sma

main()

{

new HandOfCards[10]

FillRandom(HandOfCards, 52)

print "A draw of 10 numbers from a range of 0 to 51 \

(inclusive) without duplicates:\n"

for (new i = 0; i < sizeof HandOfCards; i++)

printf "%d ", HandOfCards[i]

}

FillRandom(Series[], Range, Number = sizeof Series)

{

assert Range >= Number /* cannot select 50 values

* without duplicates in the

* range 0..40, for example */

new Index = 0

for (new Seq = Range - Number; Seq < Range; Seq++)

{

new Val = random(Seq + 1)

new Pos = InSeries(Series, Val, Index)

if (Pos >= 0)

{

Series[Index] = Series[Pos]

Series[Pos] = Seq

}

else

Series[Index] = Val

Index++

}

}

InSeries(Series[], Value, Top = sizeof Series)

{

for (new i = 0; i < Top; i++)

if (Series[i] == Value)

return i

return -1

}

“random” is a
proposed core
function, see
page 99

Function main declares the array HandOfCards with a size of ten cells and then
Array declara-
tions: 43 calls function FillRandom with the purpose that it draws ten positive random

numbers below 52. Observe, however, that the only two parameters that main

passes into the call to FillRandom are the array HandsOfCards, where the random

Functions / 57

numbers should be stored, and the upper bound “52”. The number of random
numbers to draw (“10”) is passed implicitly to FillRandom.

The definition of function FillRandom below main specifies for its third parameter
“Number = sizeof Series”, where “Series” refers to the first parameter of the
function. Due to the special case of a “sizeof default value”, the default value
of the Number argument is not the size of the formal argument Series, but that
of the actual argument at the point of the function call: HandOfCards.

Note that inside function FillRandom, asking the “sizeof” the function argu-
ment Series would (still) evaluate in zero, because the Series array is declared
with unspecified length (see page 87 for the behaviour of sizeof). Using sizeof

as a default value for a function argument is a specific case. If the formal param-
eter Series were declared with an explicit size, as in Series[10], it would be
redundant to add a Number argument with the array size of the actual argument,
because the parser would then enforce that both formal and actual arguments
have the size and dimensions.

58 . Functions

• Arguments with tag names

A tag optionally precedes a function argument. Using tags improves the compile-
Tag names: 46

time error checking of the script and it serves as “implicit documentation” of
the function. For example, a function that computes the square root of an input
value in fixed point precision may require that the input parameter is a fixed point
value and that the result is fixed point as well. The function below uses the fixed
point extension module, and an approximation algorithm known as “bisection”

Fixed point
arithmetic: 69;
see also the ap-
plication note
“Fixed Point
Support Library”

to calculate the square root. Note the use of tag overrides on numeric literals and
expression results.

Listing: sqroot function —strong tags

Fixed: sqroot(Fixed: value)

{

new Fixed: low = 0.0

new Fixed: high = value

while (high - low > Fixed: 1)

{

new Fixed: mid = (low + high) >> 1

if (fmul(mid, mid) < value)

low = mid

else

high = mid

}

return low

}

With the above definition, the Small parser issues a diagnostic if one calls the
sqroot function with a parameter with a tag different from “Fixed:”, or when it
tries to store the function result in a variable with a “non-Fixed:” tag.

The bisection algorithm is related to binary search, in the sense that it continu-
ously halves the interval in which the result must lie. A “successive substitution”
algorithm like Newton-Raphson, that takes the slope of the function’s curve into
account, achieves precise results more quickly, but at the cost that a stopping cri-
terion is more difficult to state. State of the art algorithms for computing square
roots combine bisection and Newton-Raphson algorithms.

In the case of an array, the array indices can be tagged as well. For example, a
function that creates the intersection of two rectangles may be written as:

For the “rect-
angle” tag, see
page 46

Listing: intersection function

intersection(dest[rectangle], const first[rectangle], const second[rectangle])

{

Functions / 59

if (first[right] > second[left] && first[left] < second[right]

&& first[bottom] > second[top] && first[top] < second[bottom])

{

/* there is an intersection, calculate it using the "min" and

* "max" functions from the "core" library, see page 99.

*/

dest[left] = max(first[left], second[left])

dest[right] = min(first[right], second[right])

dest[top] = max(first[top], second[top])

dest[bottom] = min(first[bottom], second[bottom])

return true

}

else

{

/* "first" and "second" do not intersect */

dest = { 0, 0, 0, 0 }

return false

}

}

• Variable arguments

A function that takes a variable number of arguments, uses the “ellipsis” oper-
ator (“...”) in the function header to denote the position of the first variable
argument. The function can access the arguments with the predefined functions
numargs, getarg and setarg (see page 99).

Function sum returns the summation of all of its parameters. It uses a variable
length parameter list.

Listing: sum function, revised

sum(...)

{

new result = 0

for (new i = 0; i < numargs(); ++i)

result += getarg(i)

return result

}

This function could be used in:

Listing: sum function usage

new v = sum(1, 2, 3, 4, 5)

60 . Functions

A tag may precede the ellipsis to enforce that all subsequent parameters have the
Tag names: 46

same tag, but otherwise there is no error checking with a variable argument list
and this feature should therefore be used with caution.

The functions getarg and setarg assume that the argument is passed “by ref-
erence”. When using getarg on normal function parameters (instead of variable
arguments) one should be cautious of this, as neither the compiler nor the abstract
machine can check this. Actual parameters that are passed as part of a “variable
argument list” are always passed by reference.

• Coercion rules

If the function argument, as per the function definition (or its declaration), is a
“value parameter”, the caller can pass as a parameter to the function:

� a value, which is passed by value;

� a reference, whose dereferenced value is passed;

� an (indexed) array element, which is a value.

If the function argument is a reference, the caller can pass to the function:

� a value, whose address is passed;

� a reference, which is passed by value because it has the type that the function
expects;

� an (indexed) array element, which is a value.

If the function argument is an array, the caller can pass to the function:

� an array with the same dimensions, whose starting address is passed;

� an (indexed) array element, in which case the address of the element is passed.

• Recursion

A faculty example function earlier in this chapter used a simple loop. An ex-
“faculty”: 50
“fibonacci”: 8

ample function that calculated a number from the Fibonacci series also used a
loop and an extra variable to do the trick. These two functions are the most
popular routines to illustrate recursive functions, so by implementing these as
iterative procedures, you might be inclined to think that Small does not support
recursion.

Well, Small does support recursion, but the calculation of faculties and of Fi-
bonacci numbers happen to be good examples of when not to use recursion. Fac-
ulty is easier to understand with a loop than it is with recursion. Solving Fibonacci

Functions / 61

numbers by recursion indeed simplifies the problem, but at the cost of being ex-
tremely inefficient: the recursive Fibonacci calculates the same values over and
over again.

The program below is an implementation of the famous “Towers of Hanoi” game
There exists an
intriguing itera-
tive solution to
the Towers of
Hanoi.

in a recursive function:

Listing: hanoi.sma

/* The Towers of Hanoi, a game solved through recursion */

main()

{

print "How many disks: "

new disks = getvalue()

move 1, 3, 2, disks

}

move(from, to, spare, numdisks)

{

if (numdisks > 1)

move from, spare, to, numdisks-1

printf "Move disk from pillar %d to pillar %d\n", from, to

if (numdisks > 1)

move spare, to, from, numdisks-1

}

• Forward declarations

For standard functions, the current “reference implementation” of the Small

compiler does not require functions to be declared before their first use.∗ User-
defined operators are special functions, and unlike standard functions they must
be declared before use. In many cases it is convenient to put the implementation
of a user-defined operator in an include file, so that the implementation and dec-
laration precedes any call/invocation. Sometimes, it may however be required (or

Forbidden user-
defined opera-
tors: 70

convenient) to declare a user- defined operator first and implement it elsewhere.
A particular use of this technique is to implement “forbidden” user-defined oper-
ators.

To create a forward declaration, precede the function name and its parameter list
with the keyword forward. For compatibility with early versions of Small, and
for similarity with C/C++, an alternative way to forwardly declare a function is

∗
Other implementations of the SMALL language (if they exist) may use “single pass” parsers,

requiring functions to be defined before use.

62 . Functions

by typing the function header and terminating it with a semicolon (which follows
the closing parenthesis of the parameter list).

The full definition of the function, with a non-empty body, is implemented else-
where in the source file (except for forbidden user-defined operators).

• Public functions, function main

A stand-alone program must have the function main. This function is the starting
point of the program. The function main may not have arguments.

A function library need not to have a main function, but it must have it either
a main function, or at least one public function. Function main is the primary
entry point into the compiled program; the public functions are alternative entry
points to the program. The virtual machine can start execution with one of the
public functions. A function library may have a main function to perform one-time
initialization at startup.

To make a function public, prefix the function name with the keyword public.
For example, a text editor may call the public function “onkey” for every key that
the user typed in, so that the user can change (or reject) keystrokes. The onkey

function below would replace every “~” character (code 126 in the ISO Latin-1
character set) by the “hard space” code in the ANSI character table:

Listing: onkey function

public onkey(keycode)

{

if (key==’~’)

return 160 /* replace ~ by hard space (code 160 in Latin-1) */

else

return key /* leave other keys unaltered */

}

Functions whose name starts with the “@” symbol are also public. So an alter-
native way to write the public function onkey function is:

Listing: @onkey function

@onkey(keycode)

return key==’~’ ? 160 : key

The “@” character, when used, becomes part of the function name; that is, in the
last example, the function is called “@onkey”. The host application decides on
the names of the public functions that a script may implement.

Arguments of a public function may not have default values. A public function
Default values
of function argu-
ments: 54

interfaces the host application to the Small script. Hence, the arguments passed

Functions / 63

to the public function originate from the host application, and the host applica-
tion cannot know what “default values” the script writter plugged for function
arguments —which is why the Small parser flags the use of default values for
arguments of public functions as an error. The issue of default values in public
function arguments only pops up in the case that you wish to call public functions
from the script itself.

• Static functions

When the function name is prefixed with the keyword static, the scope of the
function is restricted to the file that the function resides in.

The static attribute can be combined with the “stock” attribute.

• Stock functions

A “stock” function is a function that the Small parser must “plug into” the pro-
gram when it is used, and that it may simply “remove” from the program (without
warning) when it is not used. Stock functions allow a compiler or interpreter to
optimize the memory footprint and the file size of a (compiled) Small program:
any stock function that is not referred to, is completely skipped —as if it were
lacking from the source file.

A typical use of stock functions, hence, is in the creation of a set of “library”
functions. A collection of general purpose functions, all marked as “stock” may
be put in a separate include file, which is then included in any Small script. Only
the library functions that are actually used get “linked” in.

To declare a stock function, prefix the function name with the keyword stock.
Public functions and native functions cannot be declared “stock”.

When a stock function calls other functions, it is usually a good practice to declare
those other functions as “stock” too —with the exception of native functions.
Similarly, any global variables that are used by a stock function should in most

Stock variables:
42cases also be defined “stock”. The removal of unused (stock) functions can cause a

chain reaction in which other functions and global variables are not longer accessed
either. Those functions are then removed as well, thereby continuing the chain
reaction until only the functions that are used, directly or indirectly, remain.

• Native functions

64 . Functions

A Small program can call application-specific functions through a “native func-
tion”. The native function must be declared in the Small program by means
of a function prototype. The function name must be preceded by the keyword
native.

Examples:

native getparam(a[], b[], size)

native multiply_matrix(a[], b[], size)

native openfile(const name[])

The names “getparam”, “multiply_matrix” and “openfile” are the internal
names of the native functions; these are the names by which the functions are
known in the Small program. Optionally, you may also set an external name for
the native function, which is the name of the function as the “host application”
knows it. To do so, affix an equal sign to the function prototype followed by the
external name. For example:

native getparam(a[], b[], size) = host_getparam

native multiply_matrix(a[], b[], size) = mtx_mul

When a native function returns an array, the dimensions and size of the array
must be explicitly declared. The array specification occurs between the function
name and the parameter list. For example:

enum rect { left, top, right, bottom }

native intersect[rect](first[rect], second[rect])

Unless specified explicitly, the external name is equal to the internal name of a
An example of
a “native” user-
defined operator
is on page 68

native function. One typical use for explicit external names is to set a symbolic
name for a user-defined operator that is implemented as a native function.

See the “Implementor’s Guide” for implementing native functions in C/C++ (on
the “host application” side).

• User-defined operators

The only data type of Small is a “cell”, typically a 32-bit number or bit pattern.
Tags: 46

The meaning of a value in a cell depends on the particular application —it need
not always be a signed integer value. Small allows to attach a “meaning” to a
cell with its “tag” mechanism.

Based on tags, Small also allows you to redefine operators for cells with a specific
purpose. The example below defines a tag “ones” and an operator to add two

Functions / 65

“ones” values together (the example also implements operators for subtraction
and negation). The example was inspired by the checksum algorithm of several
protocols in the TCP/IP protocol suite: it simulates one’s complement arithmetic
by adding the carry bit of an arithmetic overflow back to the least significant bit
of the value.

Listing: ones.sma

forward ones: operator+(ones: a, ones: b)

forward ones: operator-(ones: a, ones: b)

forward ones: operator-(ones: a)

main()

{

new ones: chksum = ones: 0xffffffff

print "Input values in hexadecimal, zero to exit\n"

new ones: value

do

{

print ">> "

value = ones: getvalue(.base=16)

chksum = chksum + value

printf "Checksum = %x\n", chksum

}

while (value)

}

stock ones: operator+(ones: a, ones: b)

{

const ones: mask = ones: 0xffff /* word mask */

const ones: shift = ones: 16 /* word shift */

/* add low words and high words separately */

new ones: r1 = (a & mask) + (b & mask)

new ones: r2 = (a >>> shift) + (b >>> shift)

new ones: carry

restart: /* code label (goto target) */

/* add carry of the new low word to the high word, then

* strip it from the low word

*/

carry = (r1 >>> shift)

r2 += carry

r1 &= mask

/* add the carry from the new high word back to the low

* word, then strip it from the high word

*/

carry = (r2 >>> shift)

r1 += carry

r2 &= mask

66 . Functions

/* a carry from the high word injected back into the low

* word may cause the new low to overflow, so restart in

* that case

*/

if (carry)

goto restart

return (r2 << shift) | r1

}

stock ones: operator-(ones: a)

return (a == ones: 0xffffffff) ? a : ~a

stock ones: operator-(ones: a, ones: b)

return a + -b

The notable line in the example is the line “chksum = chksum + value” in the
loop in function main. Since both the variables chksum and value have the tag
ones, the “+” operator refers to the user-defined operator (instead of the default
“+” operator). User-defined operators are merely a notational convenience. The
same effect is achieved by calling functions explicitly.

The definition of an operator is similar to the definition of a function, with the
difference that the name of the operator is composed by the keyword “operator”
and the character of the operator itself. In the above example, both the unary “-”
and the binary “-” operators are redefined. An operator function for a binary
operator must have two arguments, one for an unary operator must have one
argument. Note that the binary “-” operator adds the two values together after
inverting the sign of the second operand. The subtraction operator thereby refers
to both the user-defined “negation” (unary “-”) and addition operators.

A redefined operator must adhere to the following restrictions:

� A user-defined operator must be declared before use (this is in contrast toForward declara-
tion: 61 “normal” functions): either put the implementation of the user-defined operator

above the functions that use it, or add a forward declaration near the top of
the file.

� Only the following operators may be redefined: +, -, *, /, %, ++, --, ==, !=, <,
>, <=, >=, ! and =. That is, the sets of arithmetic and relational operators can
be overloaded, but the bitwise operators and the logical operators cannot. The
= and ! operators are a special case.

� You cannot invent new operators; you cannot define operator “#” for example.

� The precedence level and associativity of the operators, as well as their “arity”
remain as defined. You cannot make an unary “+” operator, for example.

Functions / 67

� The return tag of the relational operators and of the “!” operator must be
“bool:”.

� The return tag of the arithmetic operators is at your choosing, but you cannot
redefine an operator that is identical to another operator except for its return
tag. For example, you cannot make both

alpha: operator+(alpha: a, alpha: b)

and
beta: operator+(alpha: a, alpha: b)

(The assignment operator is an exception to this rule.)
� Small already defines operators to work on untagged cells, you cannot redefine

the operators with only arguments without tags.
� The arguments of the operator function must be non-arrays passed by value.

You cannot make an operator work on arrays.

In the example given above, both arguments of the binary operators have the same
tag. This is not required; you may, for example, define a binary “+” operator that
adds an integer value to a “ones:” number.

Basically, the operation of the Small parser is to look up the tag(s) of the
operand(s) that the operator works on and to look up whether a user-defined
operator exists for the combination of the operator and the tag(s). However, the
parser recognizes special situations and provides the following features:
� The parser recognizes operators like “+=” as a sequence of “+” and “=” and it

will call a user-defined operator “+” if available and/or a user-defined operator
“=”. In the example program, the line “chksum = chksum + value” might
have been abbreviated to “chksum += value”.

� The parser recognizes commutative operators (“+”, “*”, “==”, and “!=”) and
it will swap the operands of a commutative operator if that produces a fit with
a user-defined operator. For example, there is usually no need to implement
both

ones:operator+(ones:a, b)

and
ones:operator+(a, ones:b)

(implementing both functions is valid, and it is useful in case the user-defined
operator should not be commutative).

� Prefix and postfix operators are handled automatically. You only need to define
one user operator for the “++” and “--” operators for a tag.

� The parser calls the “!” operator implictly in case of a test without explicit
comparison. For example, in the statement “if (var) ...” when “var”
has tag “ones:”, the user-defined operator “!” will be called for var. The

68 . Functions

“!” operator thus doubles as a “test for zero” operator. (In one’s complement
arithmetic, both the “all-ones” and the “all-zeros” bit patterns represent zero.)

� The user-defined assigment operator is implicitly called for a function argument
“Call by value”
versus “call by
reference”: 50

that is passed “by value” when the tag names of the formal and the actual argu-
ments match the tag names of the left and right hand sides of the operator. In
other words, the Small parser similates that “pass by value” happens through
assignment. The user-defined operator is not called for function arguments that
are passed “by reference”.

� If you wish to forbid an operation, you can “forward declare” the operator
without ever defining it (see page 61). This will flag an error when the user-
defined operator is invoked. For example, to forbid the “%” operator (remainder
after division) on floating point values, you can add the line:

forward Float: operator%(Float: a, Float: b)

User-defined operators can optionally be declared “stock” or “native”. In the
Native functions:
63 case of a native operator function, the definition should include an external name.

For example (when, on the host’s side, the native function is called float_add):

Listing: native operator+ function

native Float: operator+(Float: val, Float: val) = float_add

The user-defined assignment operator is a special case, because it is an operator
that has a side effect. Although the operator has the appearance of a binary
operator, its “expression result” is the value at the right hand —the assignment
operator would be a “null”-operator if it weren’t for its side-effect. In Small a
user-defined assignment operator is declared as:

Listing: operator= function

ones: operator=(a)

return ones: ((a >= 0) ? a : ~(-a))

The user-defined “=” operator looks like a unary operator in this definition, but
it is a special case nevertheless. In contrast to the other operators, the tag of the
return value for the user-defined operator is important: the Small parser uses
the tags of the argument and the return value to find a matching user-defined
operator.

The example function above is a typical application for a user-defined assignment
operator: to automatically coerce/convert an untagged value to a tagged value,
and to optionally change the memory representation of the value in the process.
Specifically, the statement “new ones:A = -5” causes the user-defined operator
to run, and for the constant -5 the operator will return “~(- -5)”, or ~5, or −6.∗

∗
Modern CPUs use two’s complement integer arithmetic. For positive values, the bitwise represen-

Functions / 69

• Floating point and fixed point arithmetic

Small only has intrinsic support for integer arithmetic (the � -domain: “whole
numbers”, both positive and negative). Support for floating point arithmetic
or fixed point arithmetic must be implemented through (native) functions. User
operators, then, allow a more natural notation of expressions with fixed or floating
point numbers.

The Small parser has support for literal values with a fractional part, which it
Rational literals:
76
#pragma ratio-
nal: 96

calls “rational numbers”. Support for rational literals must be enabled explicitly
with a #pragma. The #pragma indicates how the rational numbers must be stored
—floating point or fixed point. For fixed point rational values, the #pragma also
specifies the precision in decimals. Two examples for the #pragma are:

#pragma rational Float /* floating point format */

#pragma rational Fixed(3) /* fixed point, with 3 decimals */

Since a fixed point value must still fit in a cell, the number of decimals has a
direct influence of the range of a fixed point value. For a fixed point value with 3
decimals, the range would be −2, 147, 482 . . .+ 2, 147, 482.

The format for a rational number may only be specified once for the entire Small

program. In an implementation one typically chooses either floating point sup-
port or fixed point support. As stated above, for the actual implementation of
the floating point or fixed point arithmetic, Small requires the help of (native)
functions and user-defined operators. A good place to put the #pragma for ratio-
nal number support would be in the include file that also defines the functions
and operators.

The include file † for fixed point arithmetic contains definitions like:

native Fixed: operator*(Fixed: val1, Fixed: val2) = fmul

native Fixed: operator/(Fixed: val1, Fixed: val2) = fdiv

tation of a value is the same in one’s complement and two’s complement, but the representations

differ for negative values. For instance, the same bit pattern that means -5 in one’s complement

stands for -6 in two’s complement.

†
See the application note “Fixed Point Support Library” for where to obtain the include file.

70 . Functions

The user-defined operators for multiplication and division of two fixed point num-
bers are aliased directly to the native functions fmul and fdiv. The host appli-
cation must, then, provide these native functions.

Another native user-defined operator is convenient to transform an integer to fixed
point automatically, if it is assigned to a variable tagged as “Fixed:”:

native Fixed: operator=(oper) = fixed

With this definition, you can say “new Fixed: fract = 3” and the value
User-defined op-
erators: 64 will be transformed to 3.000 when it is stored in variable fract. As explained

in the section on user-defined operators, the assignment operator also runs for
function arguments that are passed by value. In the expression “new Fixed:

root = sqroot(16)” (see the implementation of function sqroot on page 58),
the user-defined assignment operator is called on the argument 16.

For adding two fixed point values together, the default “+” operator is sufficient,
and the same goes for subtraction. Adding a normal (integer) number to a fixed
point number is different: the normal value must be scaled before adding it.
Hence, the include file implements operators for that purpose too:

Listing: additivive operators, commucative and non-commucative

stock Fixed: operator+(Fixed: val1, val2)

return val1 + fixed(val2)

stock Fixed: operator-(Fixed: val1, val2)

return val1 - fixed(val2)

stock Fixed: operator-(val1, Fixed: val2)

return fixed(val1) - val2

The “+” operator is commutative, so one implementation handles both cases. For
the “-” operator, both cases must be implemented separately.

Finally, the include file forbids the use of the modulus operator (“%”) on fixed
point values: the modulus is only applicable to integer values:

Listing: forbidden operators on fixed point values

forward Fixed: operator%(Fixed: val1, Fixed: val2)

forward Fixed: operator%(Fixed: val1, val2)

forward Fixed: operator%(val1, Fixed: val2)

Because of the presence of the (forward) declaration of the operator, the Small

parser will attempt to use the user-defined operator rather than the default “%”
operator. By not implementing the operator, the parser will subsequently issue
an error message.

71

The preprocessor

The first phase of compiling a Small source file to the executable P-code is
“preprocessing”: a general purpose text filter that modifies/cleans up the text
before it is fed into the parser. The preprocessing phase removes comments,
strips out “conditionally compiled” blocks, processes the compiler directives and
performs find-&-replace operations on the text of the source file. The compiler
directives are summarized on page 93 and the text substitution (“find-&-replace”)
is the topic of this chapter.

The preprocessor is a process that is invoked on all source lines immediately after
they are read. No syntax checking is performed during the text substitutions.
While the preprocessor allows powerfull tricks in the Small language, it is also
easy to shoot yourself in the foot with it.

In this chapter, I will refer to the C/C++ language on several occasions because
Small’s preprocessor is similar to the one in C/C++. That said, the Small

preprocessor is incompatible with the C/C++ preprocessor.

The #define directive defines the preprocessor macros. Simple macros are:
#define maxsprites 25

#define CopyRightString "(c) Copyright 2004 by me"

In the Small script, you can then use them as you would use constants. For
example:

#define maxsprites 25

#define CopyRightString "(c) Copyright 2004 by me"

main()

{

print(Copyright)

new sprites[maxsprites]

}

By the way, for these simple macros there are equivalent Small constructs:
const maxsprites = 25

stock const CopyRightString[] = "(c) Copyright 2004 by me"

These constant declarations have the advantage of better error checking and the
ability to create tagged constants. The syntax for a string constant is an array
variable that is declared both “const” and “stock”. The const attribute pro-
hibits any change to the string and the stock attribute makes the declaration
“disappear” if it is never referred to.

Substitution macros can take up to 10 parameters. A typical use for parametrized
macros is to simulate tiny functions:

72 . The preprocessor

Listing: the “min” macro

#define min(%1,%2) ((%1) < (%2) ? (%1) : (%2))

If you know C/C++, you will recognize the habit of enclosing each argument and
the whole substitution expression in parantheses.

If you use the above macro in a script in the following way:

Listing: bad usage of the “min” macro

new a = 1, b = 4

new min = min(++a,b)

the preprocessor translates it to:
new a = 1, b = 4

new min = ((++a) < (b) ? (++a) : (b))

which causes “a” to possibly be incremented twice. This is one of the traps that
you can trip into when using substitution macros (this particular problem is well
known to C/C++ programmers). Therefore, it may be a good idea to use a naming
convention to distinguish macros from functions. In C/C++ it is common practice
to write preprocessor macros in all upper case.

To show why enclosing macro arguments in parentheses is a good idea, consider
the macro:

#define ceil_div(%1,%2) (%1 + %2 - 1) / %2

This macro divides the first argument by the second argument, but rounding
upwards to the nearest integer (the divide operator, “/”, rounds downwards). If
you use it as follows:

new a = 5

new b = ceil_div(8, a - 2)

the second line expands to “new b = (8 + a - 2 - 1) / a - 2”, which,
Operator prece-
dence: 87 considering the precedence levels of the Small operators, leads to “b” being set

to zero (if “a” is 5). What you would have expected from looking at the macro
invokation is eight divided by three (“a - 2”), rounded upwards —hence, that
“b” would be set to the value 3. Changing the macro to enclose each parameter in
parentheses solves the problem. For similar reasons, it is also advised to enclose
the complete replacement text in parentheses. Below is the ceil_div macro
modified accordingly:

#define ceil_div(%1,%2) (((%1) + (%2) - 1) / (%2))

The pattern matching is subtler than matching strings that look like function
calls. The pattern matches text literally, but accepts arbitrary text where the
pattern specifies a parameter. You can create patterns like:

The preprocessor / 73

Listing: macro that translates a syntax for array access to a function call

#define Object[%1] CallObject(%1)

When the expansion of a macro contains text that matches other macros, the
expansion is performed at invocation time, not at definition time. Thus the code:

#define a(%1) (1+b(%1))

#define b(%1) (2*(%1))

new c = a(8)

will evaluate to “new c = (1+(2*(8)))”, even though the macro “b” was not
defined at the time of the definition of “a”.

The pattern matching is constrained to the following rules:
� There may be no space characters in the pattern. If you must match a space,

you need to use the “\32;” escape sequence. The substitution text, on the
other hand, may contain space characters. Due to the matching rules of the
macro pattern (explained below), matching a space character is rarely needed.

� As evidenced in the preceding line, escape sequences may appear in the pattern
(they are not very useful, though, except perhaps for matching a literal “%”
character).

� The pattern may not end with a parameter; a pattern like “set:%1=%2” is
illegal. If you wish to match with the end of a statement, you can add a
semicolon at the end of the pattern. If semicolons are optional at the end of
each statement, the semicolon will also match a newline in the source.

� The pattern must start with a letter, an underscore, or an “@” character The
first part of the pattern that consists of alphanumeric characters (plus the “_”
and/“@”) is the “name” or the “prefix” of the macro. On the defined operator
and the #undef directive, you specify the macro prefix.

� When matching a pattern, the preprocessor ignores white space between non-
alphanumeric symbols and white space between an alphanumeric symbol and
a non-alphanumeric one, with one exception: between two identical symbols,
white space is not ignored. Therefore:

the pattern abc(+-) matches “abc (+ -)”
the pattern abc(--) matches “abc (--)” but does not match “abc(- -)”

� There are up to 10 parameters, denoted with a “%” and a single digit (1 to 9
and 0). The order of the parameters in a pattern is not important.

� The #define symbol is a parser directive. As with all parser directives, the
Directives: 93

pattern definition must fit on a single line. You can circumvent this with a “\”
on the end of the line. The text to match must also fit on a single line.

Note that in the presence of (parametrized) macros, lines of source code may not
be what they appear: what looks like an array access may be “preprocessed” to
a function call, and vice versa.

74 . The preprocessor

A host application that embeds the Small parser may provide an option to let
you check the result of text substitution through macros. If you are using the
standard Small toolset, you will find instructions of how to use the compiler
and run-time in the companion booklet “The Small booklet — Implementor’s
Guide”.

75

General syntax

Format
Identifiers, numbers and tokens are separated by spaces, tabs, carriage
returns and “form feeds”. Series of one or more of these separators are
called white space.

Optional semicolons
Semicolons (to end a statement) are optional if they occur at the end

Optional semi-
colons: 97

of a line. Semicolons are required to separate multiple statements on a
single line. An expression may still wrap over multiple lines, but post-
fix operators (++, -- and char) must appear on the same line as their
operand.

Comments
Text between the tokens /* and */ (both tokens may be at the same line
or at different lines) and text behind // (up to the end of the line) is
a programming comment. The parser treats a comment as white space.
Comments may not be nested.

A comment that starts with “/** ” (two stars and whitespace behind
the second star) and ends with “*/” is a documentation comment. A
comment that starts with “/// ” (three slashes and whitespace behind
the third slash) is also a documentation comment. The parser may treat
documentation comments in a special way; for example, it may construct
on-line help from it.

Identifiers
Names of variables, functions and constants. Identifiers consist of the
characters a. . .z, A. . .Z, 0. . .9, _ or @; the first character may not be a
digit. The characters @ and _ by themselves are not valid identifiers, i.e.
“_Up” is a valid identifier, but “_” is not.

Small is case sensitive.

A parser may truncate an identifier after a maximum length. The number
of significant characters is implementation defined, but should be at least
16 characters.

Reserved words (keywords)
Statements Operators Directives Other

assert char #assert const

76 . General syntax

break defined #define enum
case sizeof #else forward
continue tagof #emit native
default #endif new
do #endinput operator
else #endscript public
exit #error static
for #file stock
goto #if
if #include
return #line
sleep #pragma
switch #section
while #tryinclude

#undef

Next to reserved words, Small also has several predefined constants, you
Predefined con-
stants: 80 cannot use the symbol names of the predefined constants for variable or

function names.

Constants (literals)
Integer numeric constants

binary
0b followed by a series of the digits 0 and 1.

decimal
a series of digits between 0 and 9.

hexadecimal
0x followed by a series of digits between 0 and 9 and the
letters a to f.

In all number radices, an underscore may be used to separate
groups of (hexa-)decimal digits. Underscore characters between
the digits are ignored.

Rational number constants
A rational number is a number with a fractional part. A rational

Rational num-
bers are also
called “real num-
bers” or “float-
ing point num-
bers”

number starts with one or more digits, contains a decimal point
and has at least one digit following the decimal point. For exam-
ple, “12.0” and “0.75” are valid rational numbers. Optionally, an
exponent may be appended to the rational number; the exponent
notation is the letter “e” (lower case) followed by a signed inte-

General syntax / 77

ger numeric constant. For example, “3.12e4” is a valid rational
number with an exponent.

Support for rational numbers must be enabled with #pragma ra-
#pragma ratio-
nal: 96

tional directive. Depending on the options set with this direc-
tive, the rational number represents a floating point or a fixed
point number.

Character constants
A single ASCII character surrounded by single quotes is a char-
acter constant (for example: ’a’, ’7’, ’$’). Character constants
are assumed to be numeric constants.

Escape sequences

’\a’ Audible alarm (beep)
’\b’ Backspace
’\e’ Escape
’\f’ Formfeed
’\n’ Newline
’\r’ Carriage Return
’\t’ Horizontal tab
’\v’ Vertical tab
’\\’ \ the escape character
’\’’ ’ single quote
’\"’ " double quote
’\% % percent sign
’\ddd;’ character code with decimal code “ddd”
’\xhhh;’ character code with hexadecimal code “hhh”

The semicolon after the \ddd; and \xhhh; codes is optional. Its
purpose is to give the escape sequence sequence an explicit ter-
mination symbol when it is used in a string constant.

The backslash (“\”) is the default “escape” character. You can set
a different escape character with the #pragma ctrlchar directive
(page 95).

String constants
String constants are assumed to be arrays with a size that is suf-
ficient to hold all characters plus a terminating ’\0’. Each string
is stored at a unique position in memory; there is no elimination
of duplicate strings.

78 . General syntax

An unpacked string is a series of zero or more ASCII charac-
ters surrounded by double quotes. Each array element contains
a single character. An unpacked string can hold characters in a
multi-byte character set, such as Unicode or UCS-4.

unpacked string constant:
"the quick brown fox..."

A packed string literal follows the syntax for an unpacked string,
but a “!” precedes the first double quote.

packed string constant:
The syntax for
packed literal
strings and un-
packed literal
strings can be
swapped with
the “#pragma
pack” directive,
see page 96

!"...packed and sacked the lazy dog"

In the case of a packed string, the parser packs as many characters
in a cell as will fit. A character is not addressable as a single unit,
instead each element of the array contains multiple characters.
The first character in a “pack” occupies the highest bits of the
array element. In environments that store memory words with the
high byte at the lower address (Big Endian, or Motorola format),
the individual characters are stored in the memory cells in the
same order as they are in the string. A packed string ends with
a zero character and the string is padded (with zero bytes) to a
multiple of cells.

A packed string can only hold characters from a single-byte char-
acter set, such as ascii or one of the extended ascii sets from the
ISO 8859 norm.

Escape sequences may be used within strings. See the section on
character constants (page 77) for a list of escape sequences.

There is an alternative syntax for “plain strings”. In a plain
string, every character is taken as-is and escape sequences are
not recognized. Plain strings are convenient to store file/resource
names, especially in the case where the escape character is also
used as a special character by the operating system or host appli-
cation.

The syntax for a plain string is the escape character followed by
the string in double quotes. The backslash (“\”) is the default
“escape” character. You cannot enter escape sequences in a plain
string: all characters will be taken literally.

General syntax / 79

plain string constant:
\"C:\all my work\novel.rtf"

In the above example, the occurrences of “\a” and “\n” do not
indicate escape sequences, but rather the literal character pairs
“\” and “a”, and “\” and “n”.

A packed plain string has both the “!” and the escape character
prefixing the opening double quote. Both strings below are packed
plain strings:

!\"C:\all my work\novel.rtf"

\!"C:\all my work\novel.rtf"

Array constants
A series of numeric constants between braces is an array constant.
Array constants can be used to initialize array variables with (see
page 43) and they can be passed as function arguments (see page
50).

Symbolic constants
A source file declares symbolic constants with the const and the enum

instructions. The const keyword declares a single constant and the enum

defines a list of —usually— sequential constants sharing the same tag
name.

const identifier = constant expression
Creates a symbolic constant with the value of the constant expres-

Examples: 7, 18
sion on the right hand of the assignment operator. The constant
can be used at any place where a literal number is valid (for ex-
ample: in expressions, in array declarations and in directives like
“#if” and “#assert”).

enum name (increment) { constant list }
The enum instruction creates a series of constants with increment-
ing values. The constant list is a series of identifiers separated by

Identifiers: 75
commas. Unless overruled, the first constant of an enum list has
the value 0 and every subsequent constant has the value of its
predecessor plus 1.

Both the value of a constant and the increment value can be set
Examples: 18, 23

by appending the value to the constant’s identifier. To set a value,
use

name = value

80 . General syntax

in the constant list. To set the increment, use:
name [: increment]

The increment value is reset to 1 after every constant symbol
declaration in the constant list.

If both an increment and a value should be set for a constant,
the increment (“[. . .]” notation) should precede the value (“=”
notation.

The symbols in the constant list may not be tagged.

The name token that follows the enum keyword is optional. If it
is included, and if the symbol names does not have an explicit
tag, this name is used as the tag name for every symbol in the
constant list. In addition, the enum command creates an extra

See page 46 for
examples of the
“enum” constant
declarations

constant with name for the constant name and the tag name.
The value of the last constant is the value of the last symbol in
the constant list plus the increment value of that last constant.

The increment token that follows the optional name token is also
See page 23 for
an example of
a custom incre-
ment rule

optional. If included, it specifies a different post-increment rule.
By default, an enum increments the value of every succesive con-
stant with 1, but you may specify a different rule with the syntax
“(operator constant)”, where operator must be +=, *= or <<=. The
+= operator creates an additive increment, the *= and <<= create
a multiplicative increment. The constant may be a literal value
or a symbolic constant. The increment rule must be enclosed in
parentheses. If no increment rule is specified, the parenthese may
be omitted as well.

A symbolic constant that is defined locally, is valid throughout the block.
A local symbolic constant may not have the same name as a variable
(local or global), a function, or another constant (local or global).

Predefined constants

cellbits The size of a cell in bits; usually 32.

cellmax The largest valid positive value that a cell can hold; usually
2147483647.

cellmin The largest valid negative value that a cell can hold; usually
-2147483648.

charbits The size of a packed character in bits; usually 8.

General syntax / 81

charmax The largest valid packed character value; usually a packed
character is 8-bit and the maximum valid value is thus 255.

charmin The smallest valid character value, for both packed and un-
packed values; currently set to zero (0).

debug The debug level: 2 if the parser creates full symbolic informa-
tion plus run-time bounds checking, 1 if the parser generates
run-time checking only (assertions and array bounds checks),
and 0 (zero) if all debug support and run-time checking was
turned off.

false 0 (this constant is tagged as bool:)
Small The version number of the Small compiler in Binary Coded

Decimals (BCD) —that is, for version 2.7.3 the constant is
“0x273”.

true 1 (this constant is tagged as bool:)
ucharmax The largest unpacked character value, its value depends on

the size of a cell. A typical use for this constant is in checking
whether a string is packed or unpacked, see page 109.

Tag names
A tag consists of an identifier followed by a colon. There may be no white

Identifiers: 75
space between the identifier and the colon.

Predefined tag names

bool: For “true/false” flags. The predefined constants true and
false have this tag.

Fixed: Rational numbers typically have this tag when fixed point
support is enabled (page 96).

Float: Rational numbers typically have this tag when floating point
support is enabled (page 96).

82

Operators and expressions

• Notational conventions

The operation of some operators depends on the specific kinds of operands. There-
fore, operands are notated thus:
e any expression;
v any expression to which a value can be assigned (“lvalue” expressions);
a an array;
f a function;
s a symbol —which is a variable, a constant or a function.

• Expressions

An expression consists of one or more operands with an operator. The operand
can be a variable, a constant or another expression. An expression followed by a
semicolon is a statement.

Listing: examples of expressions

v++

f(a1, a2)

v = (ia1 * ia2) / ia3

• Arithmetic
+ e1 + e2

Results in the addition of e1 and e2.

- e1 - e2

Results in the subtraction of e1 and e2.

-e

Results in the arithmetic negation of a (two’s complement).

* e1 * e2

Results in the multiplication of e1 and e2.

/ e1 / e2

Results in the division of e1 by e2. The result is truncated to the
nearest integral value that is less than or equal to the quotient.
Both negative and positive values are rounded towards −∞.

Operators and expressions / 83

% e1 % e2

Results in the modulus (remainder of the division) of e1 by e2. The
modulus is always a positive value.

++ v++

increments v by 1; results in the value of v before it is incremented.
++v

increments v by 1; results in the value of v after it is incremented.

-- v--

decrements v by 1; results in the value of v before it is decremented.
--v

decrements v by 1; results in the value of v after it is decremented.

Notes: The unary + is not defined in Small.
The operators ++ and -- modify the operand. The operand must
be an lvalue.

• Bit manipulation

~ ~e

results in the one’s complement of e.

>> e1 >> e2

results in the arithmetic shift to the right of e1 by e2 bits. The
shift operation is signed: the leftmost bit of e1 is copied to vacant
bits in the result.

>>> e1 >>> e2

results in the logical shift to the right of e1 by e2 bits. The shift
operation is unsigned: the vacant bits of the result are filled with
zeros.

<< e1 << e2

results in the value of e1 shifted to the left by e2 bits; the rightmost
bits are set to zero. There is no distinction between an arithmetic
and a logical left shift

& e1 & e2

results in the bitwise logical “and” of e1 and e2.

84 . Operators and expressions

| e1 | e2

results in the bitwise logical “or” of e1 and e2.

^ e1 ^ e2

results in the bitwise “exclusive or” of e1 and e2.

• Assignment

The result of an assignment expression is the value of the left operand after the
assignment. The left operand may not be tagged.Tag names: 46

= v = e

assigns the value of e to variable v.

If “v” is an array, it must have an explicit size and “e” must be an
array of the same size; “e” may be a string or a literal array.

Note: the following operators combine an assignment with an arithmetic
or a bitwise operation; the result of the expression is the value of
the left operand after the arithmetic or bitwise operation.

+= v += e

increments v with a.
-= v -= e

decrements v with e
*= v *= e

multiplies v with e
/= v /= e

divides v by e.
%= v %= e

assigns the remainder of the division of v by e to v.
>>= v >>= e

shifts v arithmetically to the right by e bits.
>>>= v >>>= e

shifts v logically to the right by e bits.
<<= v <<= e

shifts v to the left by e bits.
&= v &= e

applies a bitwise “and” to v and e and assigns the result to v.
|= v |= e

applies a bitwise “or” to v and e and assigns the result to v.

Operators and expressions / 85

^= v ^= e

applies a bitwise “exclusive or” to v and e and assigns the result to v.

• Relational

A logical “false” is represented by an integer value of 0; a logical “true” is repre-
sented by any value other than 0. Value results of relational expressions are either
0 or 1, and their tag is set to “bool:”.

== e1 == e2

results in a logical “true” if e1 is equal to e2.

!= e1 != e2

results in a logical “true” if e1 differs from e2.

Note: the following operators may be “chained”, as in the expression
“e1 <= e2 <= e3”, with the semantics that the result is “1” if all
individual comparisons hold and “0” otherwise.

< e1 < e2

results in a logical “true” if e1 is smaller than e2.

<= e1 <= e2

results in a logical “true” if e1 is smaller than or equal to e2.

> e1 > e2

results in a logical “true” if e1 is greater than e2.

>= e1 >= e2

results in a logical “true” if e1 is greater than or equal to e2.

• Boolean

A logical “false” is represented by an integer value of 0; a logical “true” is repre-
sented by any value other than 0. Value results of Boolean expressions are either
0 or 1, and their tag is set to “bool”.

! !e

results to a logical “true” if e was logically “false”.

86 . Operators and expressions

|| e1 || e2

results to a logical “true” if either e1 or e2 (or both) are logically
“true”. The expression e2 is only evaluated if e1 is logically “false”.

&& e1 && e2

results to a logical “true” if both e1 and e2 are logically “true”.
The expression e2 is only evaluated if e1 is logically “true”.

• Miscellaneous
[] a[e]

array index: results to cell e from array a.

{ } a{e}

array index: results to character e from “packed” array a.

() f(e1,e2,...eN)

results to the value returned by the function f. The function is
called with the arguments e1, e2, . . .eN. The order of evaluation
of the arguments is undefined (an implementation may choose to
evaluate function arguments in reversed order).

? : e1 ? e2 : e3

results in either e2 or e3, depending on the value of e1. The con-
ditional expression is a compound expression with a two part op-
erator, “?” and “:”. Expression e2 is evaluated if e1 is logically
“true”, e3 is evaluated if e1 is logically “false”.

: tagname: e

tag override; the value of the expression e does not change, but its
tag changes. See page 46 for more information.

, e1, e2

results in e2, e1 is evaluated before e2. If used in function argument
lists or a conditional expression, the comma expression must be
surrounded by parentheses.

defined defined s

results in the value 1 if the symbol is defined. The symbol may be
a constant (page 76), or a global or local variable.

Operators and expressions / 87

Example: 56sizeof sizeof s

results in the size in “elements” of the specified variable. For sim-
ple variables and for arrays with a single dimension, an element is
a cell. For multi-dimensional arrays, the result is the number of
array elements in that dimension —append [] to the array name
to indicate a lower/more minor dimension. If the size of a variable
is unknown, the result is zero.
When used in a default value for a function argument, the expres-
sion is evaluation at the point of the function call, instead of in the
function definition.

tagof tagof s

results in the a unique number that represents the tag of the vari-
able, the constant, the function result or the tag label.
When used in a default value for a function argument, the expres-
sion is evaluation at the point of the function call, instead of in the
function definition.

char e char

results the number of cells that are needed to hold a packed array
of e characters.

• Operator precedence

The table beneath groups operators with equal precedence, starting with the
operator group with the highest precedence at the top of the table.

If the expression evaluation order is not explicitly established by parentheses, it
is determined by the association rules. For example: a*b/c is equivalent with
(a*b)/c because of the left-to-right association, and a=b=c is equivalent with
a=(b=c).

88 . Operators and expressions

() function call left-to-right

[] array index (cell)

{} array index (character)

! logical not right-to-left

~ one’s complement

- two’s complement (unary minus)

++ increment

-- decrement

: tag override

char convert number of packed characters to cells

defined symbol definition status

sizeof symbol size in “elements”

tagof unique number for the tag

* multiplication left-to-right

/ division

% modulus

+ addition left-to-right

- subtraction

>> arithmetic shift right left-to-right

>>> logical shift right

<< shift left

& bitwise and left-to-right

^ bitwise exclusive or left-to-right

| bitwise or left-to-right

< smaller than left-to-right

<= smaller than or equal to

> greater than

>= greater than or equal to

== equality left-to-right

!= inequality

&& logical and left-to-right

|| logical or left-to-right

? : conditional right-to-left

= assignment right-to-left

*= /= %= += -= >>= >>>= <<= &= ^= |=

, comma left-to-right

89

Statements

A statement may take one or more lines, whereas one line may contain two or
more statements.

Control flow statements (if, if–else, for, while, do–while and switch) may
be nested.

Statement label
A label consists of an identifier followed by a colon (:). A label is a “jump

Identifiers: 75target” of the goto statement.

Each statement may be preceded by a label. There must be a statement
after the label; an empty statement is allowed.

The scope of a label is the function in which it is declared (a goto state-
ment cannot therefore jump out off the current function to another func-
tion).

Compound statement
A compound statement is a series of zero or more statements surrounded
by braces ({ and }). The final brace (}) should not be followed by a
semicolon. Any statement may be replaced by a compound statement. A
compound statement is also called a block. A compound statement with
zero statements is a special case, and it is called an “empty statement”.

Expression statement
Any expression becomes a statement when a semicolon (;) is appended to
it. An expression also becomes a statement when only white space follows
it on the line and the expression cannot be extended over the next line.

Empty statement
An empty statement performs no operation and consists of a compound
block with zero statements; that is, it consists of the tokens “{ }”. Empty
statements are used in control flow statements if there is no action (e.g.
while (!iskey()) {}) or when defining a label just before the closing
brace of a compound statement. An empty statement does not end with
a semicolon.

assert expression
Aborts the program with a run-time error if the expression evaluates to

Example: 8
logically “false”.

90 . Statements

break
Terminates and exits the smallest enclosing do, for or while statement

Example: 18
from any point within the loop other than the logical end. The break

statement moves program control to the next statement outside the loop.

continue
Terminates the current iteration of the smallest enclosing do, for or while
statement and moves program control to the condition part of the loop.
If the looping statement is a for statement, control moves to the third
expression in the for statement (and thereafter to the second expression).

do statement while (expression)
Executes a statement before the condition part (the while clause) is eval-

Example: 24 uated. The statement is repeated while the condition is logically “true”.
The statement is at least executed once.

exit expression
Abort the program. The expression is optional, but it must start on the
same line as the exit statement if it is present. The exit instruction
returns the expression value (plus the expression tag) to the host applica-
tion, or zero if no exit expression is present. The significance and purpose
of exit codes is implementation defined.

for (expression 1 ; expression 2 ; expression 3) statement
All three expressions are optional.Examples: 7, 8,

18

Variable declara-
tions: 41

expression 1 Evaluated only once, and before entering the loop. This
expression may be used to initialize a variable. This ex-
pression may also hold a variable declaration, using the new
syntax. A variable declared in this expression exists only in
the for loop.

expression 2 Evaluated before each iteration of the loop and ends the loop
if the expression results to logically “false”. If omitted, the
result of expression 2 is assumed to be logically “true”.

expression 3 Evaluated after each execution of the statement. Program
control moves from expression 3 to expression 2 for the next
(conditional) iteration of the loop.

The statement for(; ;) is equivalent with while (true).

Statements / 91

goto label
Moves program control (unconditionally) to the statement that follows
the specified label. The label must be within the same function as the
goto statement (a goto statement cannot jump out of a function).

if (expression) statement 1 else statement 2
Executes statement 1 if the expression results to logically “true”. The

Example: 4
else clause of the if statement is optional. If the expression results to
logically “false” and an else clause exists, the statement associated with
the else clause (statement 2) executes.

When if statements are nested and else clauses are present, a given else

is associated with the closest preceding if statement in the same block.

return expression
Terminates the current function and moves program control to the state-

Examples: 8, 18
ment following the calling statement. The value of the expression is re-
turned as the function result. The expression may be an array variable
or a literal array.

The expression is optional, but it must start on the same line as the
return statement if it is present. If absent, the value of the function is
zero.

sleep expression
Abort the program, but leave it in a re-startable state. The expression
is optional. If included, the sleep instruction returns the expression
value (plus the expression tag) to the host application. The significance
and purpose of exit codes/tags is implementation defined; typically, an
application uses the sleep instruction to allow for light-weight multi-
tasking of several concurrent Small programs, or to implement “latent”
functions.

switch (expression) { case list }
Transfers control to different statements within the switch body depend-
ing on the value of the switch expression. The body of the switch state-
ment is a compound statement, which contains a series of “case clauses”.

Each “case clause” starts with the keyword case followed by a constant
list and one statement. The constant list is a series of expressions, sepa-
rated by comma’s, that each evaluates to a constant value. The constant
list ends with a colon. To specify a “range” in the constant list, separate

92 . Statements

the lower and upper bounds of the range with a double period (“..”). An
example of a range is: “case 1..9:”.

The switch statement moves control to a “case clause” if the value of one
of the expressions in the constant list is equal to the switch expression
result.

The “default clause” consists of the keyword default and a colon. The
default clause is optional, but if it is included, it must be the last clause
in the switch body. The switch statement moves control to the “default
clause” is executed if none of the case clauses match the expression result.

Example:

switch (weekday(12,31,1999))

{

case 0, 1: /* 0 == Saturday, 1 == Sunday */

print("weekend")

case 2:

print("Monday")

case 3:

print("Tuesday")

case 4:

print("Wednesday")

case 5:

print("Thursday")

case 6:

print("Friday")

default:

print("invalid week day")

}

while (expression) statement
Evaluates the expression and executes the statement if the expression

Examples: 4, 18,
23 result yields logically “true”. After the statement has executed, program

control returns to the expression again. The statement is thus executed
while the expression is true.

93

Directives

All directives must appear first on a line (they may be preceded by white space,
but not by any other characters). All directives start with the character # and
the complete instruction may not span more than one line.

#assert constant expression
Issues a compile time error if the supplied constant expression evaluates
to zero. The #assert directive is most useful to guard against implemen-

See also “Prede-
fined constants”
on page 80

tation defined constructs on which a program may depend, such as the
cell size in bits, or the number of packed characters per cell.

#define pattern replacement
Defines a text substitution macro. The pattern is matched to all lines
read from the source files; the sections that match are replaced by the
replacement texts. The pattern and the replacement texts may contain
parameters, denoted by “%0” to “%9”. See page 71 for details and exam-
ples on text substitution.

#emit opcode, parameters
The #emit directive serves as an inline assembler. It is currently used
only for testing the abstract machine.

#endinput
Closes the current file and thereby ignores all the text below the #end-

input directive.

#error
message: Signals a “user error” with the specified message. User errors
are fatal errors and they serve a similar purpose as the #assert directive.

#include filename or <filename>
Inserts the contents of the specified file at the current position within the
current file. A filename between angle brackets (“<” and “>”) refers to a
system file; the Small parser (compiler or interpreter) will search for such
files only in a preset list of directories and not in the “current” directory.
Filenames that are unquoted or that appear in double quotes are normal
include files, for which a Small parser will look in the currect directory
first.

The Small parser first attempts to open the file with the sepcified name.
If that fails, it tries appending the extensions “.INC” and “.SMA” to the

94 . Directives

filename (in that order). The proposed default extension of include files
is “.INC”.

#file name
Adjusts the name for the current file. This directive is used implicitly by
the text preprocessor; there is usually no need to set a filename explicitly.

#if constant expression, #else, #endif
Portions of a program may be parsed or be ignored depending on certain
conditions. The Small parser (compiler or interpreter) generates code
only for those portions for which the condition is true.

The directive #if must be followed by a constant expression. To check
whether a variable or constant is defined, use the defined operator.

The #else directive reverses the parsing state. If the parser ignored lines
up to the directive, it starts parsing and if it parsed lines, it stops parsing.

The #endif directive terminates a program portion that is parsed con-
ditionally. Conditional directives can be nested and each #if directive
must be ended by an #endif directive.

#line number
The current line number (in the current file). This directive is used im-
plicitly by the text preprocessor; there is usually no need to set the line
number explicitly.

#pragma extra information
A “pragma” is a hook for a parser to specify additional settings, such as
warning levels or extra capabilities. Common #pragmas are:

#pragma align

Aligns the next declaration to the offset set with the alignment
compiler option. Some (native) functions may perform better
with parameters that are passed by reference when these are on
boundaries of 8, 16, or even 32 bytes. Alignment requirements
are dependent of the host applications.

Putting the #pragma align line in front of a declaration of a
global or a static variable aligns this variable to the boundary set
with the compiler option. Note that this #pragma aligns only the
variable that immediately follows the #pragma. The alignment
of subsequent variables depends on the size and alignment of the
variables that precede it. For example, if a global array variable

Directives / 95

of 2 cells is aligned on a 16-byte boundary and a cell is 4 bytes,
the next global variable is located 8 bytes further.

Putting the #pragma align line in front of a declaration of a func-
tion will align the stack frame of that function to the boundary
specified earlier, with the result that the first local, non-“static”,
variable is aligned to that boundary. The alignment of subsequent
variables depends on the size and alignment of the variables that
precede it. In practice, to align a local non-static variable, you
must align the function’s stack frame and declare that variable
before any other variables.

#pragma codepage name/value
The Small parser can translate characters in unpacked strings
and character constants to Unicode/UCS-4 “wide” characters.
This #pragma indicates the codepage that must be used for the
translation. See the section “Internationalization” on page 111 for
details and required extra resources for the codepage translation.

#pragma compress value
The Small parser may write the generated P-code in compact
or plain (“non-compact”) encoding. The default depends on the
parser configuration (and, perhaps, user settings). This #pragma
allows the script writer to override the default and force com-
pact encoding (when value is non-zero) or to force plain encoding
(when value is zero). Especially toggling compact encoding off
(forcing plain encoding) is useful, because the Small parser may
be unable to compile a particular script in “compact encoding”
mode.

#pragma ctrlchar character
Defines the character to use to indicate the start of a “escape

Escape charac-
ter: 77sequence”. By default, the control character is “\”.

For example
#pragma ctrlchar ’$’

You may give the new value for the control character as a charac-
ter constant (between single quotes) or as a decimal or hexadeci-
mal value. When you omit the value of the new control character,
the parser reverts to the default control character.

96 . Directives

#pragma dynamic value
Sets the size, in cells, of the memory block for dynamic data
(the stack and the heap) to the value specified by the expression.
The default size of the dynamic data block is implementation
defined. An implementation may also choose to grow the block
on an as-needed basis (see the host program’s documentation, or
the “Implementor’s Guide” for details).

#pragma library name
Sets the name of the (dynamically linked) extension module that
contains required native functions. This #pragma should appear
above native function declarations that are part of the extension
module.

The library name parameter may be absent, in which case any
subsequent native function declarations are not associated with
any extension module.

The scope of this #pragma runs from the line at which it appears
until the end of the file in which it appears. In typical usage, a
#pragma library line will appear at the top of an include file
that declares native functions for an extension module, and the
scope of the library “link” ends at the end of that include file.

#pragma pack value
If value is zero, packed literal strings start with “!"” (exclamation
point + double quote) and unpacked literal strings with only a
double quote (“"”), as described in this manual at page 77. If
value is non-zero, the syntax for packed and unpacked literal
strings is swapped: literal strings that start with a double quote
are packed and literal strings that start with “!"” are unpacked.

#pragma rational tagname(value)
Enables support for rational numbers. The tagname is the name

Retional number
support: 76

of the tag that rational numbers will have; typically one chooses
the names “Float:” or “Fixed:”. The presence of value in
parantheses behind tagname is optional: if it is omitted, a ra-
tional number is stored as a “floating point” value according to
the IEEE 754 norm; if it is present, a rational number is a fixed
precision number (“scaled integer”) with the specified number of
decimals.

Directives / 97

#pragma semicolon value
If value is zero, no semicolon is required to end a statement if
that statement is last on a line. Semicolons are still needed to
separate multiple statements on the same line.

When semicolons are optional (the default), a postfix operator
(one of “++”, “--” and “char”) may not be the first token on a
line, as they will be interpreted as prefix operators.

#pragma tabsize value
The number of characters between two consecutive tab positions.
The default value is 8. You may need to set the tab size to avoid
warning 217 (loose indentation) if the source code is indented
alternately with spaces and with tab characters. Alternatively,
by setting the “tabsize” #pragma to zero, the parser will no
longer issue warning 217.

#pragma unused symbol,. . .
Marks the named symbol as “used”. Normally, the Small parser

Warning mes-
sages: 131warns about unused variables and unused local constants. In most

situations, these variables and constants are redundant, and it is
better to remove them for the sake of code clarity. Especially in
the case of local constants, it may, however, be better (or required)
to keep the constant definitions. This #pragma then permits to
mark the symbol (variable or constant) as “used”, and avoid a
parser warning.

The #pragma must appear after the symbol declaration —but it
need not appear immediately after the declaration.

Multiple symbol names may appear in a single #pragma; the sym-
bols must be separated by commas.

#section name
Starts a new section for the generated code. Any variables and functions
that are declared “static” are only visible to the section to which they
belong. By default, each source file is a separate section and there is only
one section per file.

With the #section directive, you can create multiple sections in a source
file. The name of a section is optional, if it is not set, a unique identifier
for the source file is used for the name of the section.

98 . Directives

Any declared section ends automatically at the end of the file.

#tryinclude filename or <filename>
This directive behaves similarly as the #include directive, but it does not
give an error when the file to include does not exist —i.e., try to include
but fail silently on error.

#undef name
Removes a text substitution macro. The “name” parameter must be the
macro “prefix” —the alphanumeric part of the macro. See page 71 for
details and examples on text substitution.

99

Proposed function library

Since Small is targeted as an application extension language, most of the func-
tions that are accessible to Small programs will be specific to the host application.
Nevertheless, a small set of functions may prove useful to many environments.

• Core functions

The “core” module consists of a set of functions that support the language itself.
Several of the functions are needed to pull arguments out of a variable argument
list (see page 59).

Since there are only few functions, I have opted to arrange them per category,
rather than alphabetically.

heapspace()
Return the free space on the heap. The stack and the heap occupy a
shared memory area.

funcidx(const name[])
Returns the index of the named public function. A host application runs

amx Exec: see
the “Implemen-
tor’s Guide”

a public function from the script by passing the public function’s index to
amx_Exec. With this function, the script can query the index of a public
function, and thereby return the “next function to call” to the application.

If no public function with the given name exists, funcidx returns −1.�
numargs()

Return the number of arguments passed to a function; numargs() is useful
inside functions with a variable argument list.

getarg(arg, index=0)
Retrieve an argument from a variable argument list. Parameter arg is the
argument sequence number, use 0 for first argument. When the argument
is an array, the index parameter specifies the index into the array. The
return value is the retrieved argument.

setarg(arg, index=0, value)
Set the value of an argument from a variable argument list. Parameter
arg is the argument sequence number, use 0 for first argument. When
the argument is an array, the index parameter specifies the index into the

100 . Proposed function library

array. The return value is false if the argument or the index are invalid,
and true on success. �

strlen(const string[])
Returns the length of a string, either packed or unpacked, as the number
of characters (not the number of cells).

strpack(dest[], const source[])
Copy a string from source to dest where the destination string will be in
packed format. The source string may either be a packed or an unpacked
string.

strunpack(dest[], const source[])
Copy a string from source to dest where the destination string will be
in unpacked format. The source string may either be a packed or an
unpacked string.

tolower(c)
Returns the character code of the lower case letter of “c” if there is one,
or the character code of “c” if the letter “c” has no lower case equivalent.

toupper(c)
Returns the character code of the upper case letter of “c” if there is one,
or the character code of “c” if “c” has no upper case equivalent.�

swapchars(c)
Returns the value of c where all bytes in the cell are swapped (the lowest
byte becomes the highest byte).

random(max)
Returns a pseudo-random number in the range 0 – max-1. The stan-
dard random number generator of Small is likely a linear congruential
pseudo-random number generator with a range and a period of 231. Linear
congruential pseudo-random number generators suffer from serial correla-
tion (especially in the low bits) and it is unsuitable for applications that
require high-quality random numbers.

max(value1, value2)
Returns the higher value of value1 and value2.

Proposed function library / 101

min(value1, value2)
Returns the lower value of value1 and value2.

clamp(value, min=cellmin, max=cellmax)
Returns value if it is in the range min – max; returns min if value is lower
than min; returns max if value is higher than max.�
Properties are general purpose names or values. The property list routines
maintain a list of these name/value pairs that is shared among all abstract
machines. The property list is therefore a way for concurrent abstract
machines to exchange information.

All “property maintenance” functions have an optional “id” parameter.
You can use this parameter to indicate which abstract machine the prop-
erty belongs to. (A host application that supports concurrent abstract
machines will usually provide each abstract machine with a unique id.)
When querying (or deleting) a property, the id value that you pass in is
matched to the id values of the list.

A property is identified with its “abstract machine id” plus either a name
or a value. The name-based interface allows you to attach a value (e.g. the
handle of an object) to a name of your choosing. The value-based interface
allows you to attach a string to a number. The difference between the
two is basically the search key versus the output parameter.

All property maintenance functions have a “name” and a “value” param-
eter. Only one of this pair must be filled in. When you give the value,
the getproperty function stores the result in the string argument and
the setproperty function reads the string to store from the string ar-
gument.

The number of properties that you can add is limited only by available
memory.

getproperty(id=0, const name[]=“”, value=cellmin, string[]=“”)
Returns the value of a property when the name is passed in; fills in the
string argument when the value is passed in. The name string may
either be a packed or an unpacked string. If the property does not exist,
this function returns zero.

setproperty(id=0, const name[]=“”, value=cellmin, const string[]=“”)
Add a new property or change an existing property.

102 . Proposed function library

deleteproperty(id=0, const name[]=“”, value=cellmin)
Returns the value of the property and subsequently removes it. If the
property does not exist, the function returns zero.

existproperty(id=0, const name[]=“”, value=cellmin)
Returns true if the property exists and false otherwise.

• Console functions

For testing purposes, the console functions that read user input and that output
strings in a scrollable window or on a standard terminal display are often conve-
nient. Not all terminal types and implementations may implement all functions
—especially the functions that clear the screen, set foreground and background
colours and control the cursor position, require an extended terminal control.

getchar(echo=true)
Read one character from the keyboard and return it. The function can
optionally echo the character on the console window.

getstring(string[], size=sizeof string, bool
pack=false): Read a string from the keyboard. Function getstring stops
reading when either the enter key is typed, or the maximum length is
reached. The maximum length is in cells (not characters) and it includes
a terminating nul character. The function can read both packed and
unpacked strings; when reading a packed string, the function may read
more characters than the size parameter specifies, because each cell holds
multiple characters. The return value is the number of characters read,
excluding the terminating nul character.

getvalue(base=10, end=‘\r’, ...)
Read a value (a signed number) from the keyboard. The getvalue func-
tion allows you to read in a numeric radix from 2 to 36 (the base param-
eter) with decimal radix by default.

By default the input ends when the user types the enter key, but one or
more different keys may be selected (the end parameter and subsequent).
In the list of terminating keys, a positive number (like ’\r’) displays
the key and terminates input, and a negative number terminates input
without displaying the terminating key.

print(const string[], foreground=-1, background=-1)
Prints a simple string on the console. The foreground and background

Proposed function library / 103

colours may be optionally set (but note that a terminal or a host appli-
cation may not support colours). See setattr below for a list of colours.

printf(const format[], ...)
Prints a string with embedded codes:

%b print a number at this position in binary radix

%c print a character at this position

%d print a number at this position in decimal radix

%f print a floating point number at this position (assuming floating point
support is present)

%q print a fixed point number at this position (assuming fixed point
support is present)

%r print either a floating point number or a fixed point number at this
position, depending on what is available; if both floating point and
fixed point support is present, %r is equivalent to %f (i.e. printing a
floating point number)

%s print a character string at this position

%x print a number at this position in hexadecimal radix

The printf function works similarly to the printf function of the C
language.

clrscr()
Clears the console and sets the cursor in the upper left corner.

clreol()
Clears the line at which the cursor is, from the position of the cursor to
the right margin of the console. This function does not move the cursor.

gotoxy(x=1, y=1)
Sets the cursor position on the console. The upper left corner is at (1,1).

setattr(foreground=-1, background=-1)
Sets foreground and background colours for the text written onto the
console. When either of the two parameters is negative (or absent), the
respective colour setting will not be changed. The colour value must be
a value between zero and seven, as per the ANSI Escape sequences, ISO
6429. Predefined constants for the colours are black (0), red (1), green
(2), yellow (3), blue (4), magenta (5), cyan (6) and white (7).

104 . Proposed function library

• Fixed point arithmetic

The fixed-point decimal arithmetic module for Small is described in an applica-
tion entitled “Fixed Point Support Library” that is available separately.

• Floating point arithmetic

The floating-point arithmetic module for Small is described in an application
entitled “Floating Point Support Library” that is available separately.

• DLL call interface

The version of the abstract machine that is build as a Dynamic Link Library for
Microsoft Windows has a general purpose function to call a function from any
DLL in memory. Two companion functions load a DLL from disk into memory
and unload it. The functions have been set up so that it is possible to run the
same compiled script in both 16-bit and 32-bit versions of Microsoft Windows.

All string parameters may be in both packed or unpacked form.

calldll(const dllname[], const function[], const typestr[], ...)
Parameter dllname is the module name of the DLL, typically this is the
same as the filename. If the DLL cannot be found, calldll tries again
after appending “16” or “32” to the filename, depending on whether you
run the 16-bit or the 32-bit version of the abstract machine. For example,
if you set dllname to “USER”, calldl connects to USER in the 16-bit
version of the abstract machine and to USER32 in the 32-bit version.

Parameter function is the name of the function in the DLL. In the 16-
bit version of, this name is case insensitive, but in the 32-bit version of
Microsoft Windows, names of exported functions are case sensitive. In
the 32-bit version of the abstract machine, if function cannot be found,
calldll appends an upper case “A” to the name and tries again —many
functions in 32-bit Windows exist in two varieties: ANSI and “Wide”,
and these functions are suffixed with an “A” or a “W” respectively. So if
function is “MessageBox”, calldll will call MessageBox in the 16-bit
version of Windows and MessageBoxA in the 32-bit version.

The string parameter typestr indicates the number of arguments that the
function (in the DLL) takes and what the types are. For every argument,
you add one letter to the typestr string:
h a Windows “handle” (HWND, HDC, HPALETTE, HMEM, etc.)

Proposed function library / 105

i an integer with a “native size” (16-bit or 32-bit, depending on the
“bitness” of the abstract machine).

l a 32-bit integer
p a packed string
s an unpacked string
w a 16-bit unsigned integer

When the letter is in lower case, the corresponding parameter is passed
“by value”; when it is in upper case, it is passed “by reference”. The
difference between packed and unpacked strings is only relevant when the
parameter is passed by reference.

loaddll(const dllname[])
Loads the specified DLL into memory (or increments its usage count it it
were already loaded). The name in parameter dllname may contain a full
path. If no path is specified, Microsoft Windows searches in its system
directories for the DLL. Similarly to the calldll function, this function
appends “16” or “32” to the DLL name if the DLL cannot be found, and
then tries again.

freedll(const dllname[])
Decrements the DLL’s usage count and, if the count becomes zero, re-
moves the DLL from memory. The name in parameter dllname may
contain a full path, but the path information is ignored. Similarly to the
calldll function, this function appends “16” or “32” to the DLL name
if the DLL cannot be found, and then tries again.

iswin32()
Returns true if the abstract machine is the 32-bit version (running in
a 32-bit version of Microsoft Windows); returns false if the abstract
machine is the 16-bit version (running either on Windows 3.1x or on any
later version of Microsoft Windows).

106

Pitfalls: differences from C

� Small lacks the typing mechanism of C. Small is an “integer-only” variety
of C; there are no structures or unions, and floating point support must be
implemented with user-defined operators and the help of native functions.

� The accepted syntax for rational numbers is stricter than that of floating point
values in C. Values like “.5” and “6.” are acceptable in C, but in Small one
must write “0.5” and “6.0” respectively. In C, the decimal period is optional
if an exponent is included, so one can write “2E8”; Small does not accept the
upper case “E” (use a lower case “e”) and it requires the decimal point: e.g.
“2.0e8”. See page 76 for more information.

� Small does not provide “pointers”. For the purpose of passing function argu-
ments by reference, Small provides a “reference” argument, (page 50). The
“placeholder” argument replaces some uses of the NULL pointer (page 54).

� Numbers can have hexadecimal, decimal or binary radix. Octal radix is not
supported. See “Constants” on page 76. Hexadecimal numbers must start with
“0x” (a lower case “x”), the prefix “0X” is invalid.

� Escape sequences (“\n”, “\t”, etc.) are the same, except for “\ddd” where
“ddd” represent three decimal digits, instead of the octal digits that C/C++

uses. The backslash (“\”) may be replaced with another symbol; see #pragma

ctrlchar on page 95 —notably, previous versions of Small used the caret
(“^”) as the escape character.

� Cases in a switch statement are not “fall through”. Only a single instruction
may (and must) follow each case label. To execute multiple instructions, you
must use a compound statement. The default clause of a switch statement
must be the last clause of the switch statement. More on page 91. In C/C++,
switch is a “conditional goto”, akin to Fortran’s calculated labels. In Small,
switch is a structured “if”.

� A break statement breaks out of loops only. In C/C++, the break statement
also ends a case in a switch statement. Switch statements are implemented
differently in Small (see page 91).

� Small supports “array assignment”, with the restriction that both arrays must
have the same size. For example, if “a” and “b” are both arrays with 6 cells,
the expression “a = b” is valid. Next to literal strings, Small also supports
literal arrays, allowing the expression “a = {0,1,2,3,4,5}” (where “a” is an
array variable with 6 elements).

Pitfalls: differences from C / 107

� char is an operator, not a type. See page 87 and the tips on page 109.

� defined is an operator, not a preprocessor directive. The defined operator
in Small operates on constants (with const and enum), global variables, local
variables and functions.

� The sizeof operator returns the size of a variable in “elements”, not in “bytes”.
An element may be a cell or a sub-array. See page 87 for details.

� The empty instruction is an empty compound block, not a semicolon (page 89).
This modification avoids a frequent error.

� The compiler directives differ from C’s preprocessor commands. Notably, the
#define directive is incompatible with that of C/C++, and #ifdef and #ifndef

are replaced by the more general #if directive (see “Directives” on page 93).
To create numeric constants, see also page 79; to create string constants, see
also page 71.

� Text substitutions (preprocessor macros; see the #define directive) are not
matched across lines. That is, the text that you want to match and replace
with a #define macro must appear on a single line. The definition of a #define

macro must also appear on a single line.

� The direction for truncation for the operator “/” is always towards the smaller
value, where -2 is smaller than -1. The “%” operator always gives a positive
result, regardless of the signs of the operands. See page 82.

� There is no unary “+” operator, which is a “no-operation” operator anyway.

� Three of the bitwise operators have different precedence than in C. The prece-
dence levels of the “&”, “^” and | operators is higher than the relational oper-
ators (Dennis Ritchie explained that these operators got their low precedence
levels in C because early C compilers did not yet have the logical “&&” and ||

operators, so the bitwise “&” and | were used instead).

� The “extern” keyword does not exist in Small; the current implementation of
the compiler has no “linking phase”. To create a program from several source
files, create one main project script file that “#include’s” all other source files.
The Small compiler can optimize out functions and global variables that you
do not use. See pages 42 and 63 for details.

� In most situations, forward declarations of functions (i.e., prototypes) are not
necessary. Small is a two-pass compiler, it will see all functions on the first

108 . Pitfalls: differences from C

pass and use them in the second pass. User-defined operators must be declared
before use, however.

If provided, forward declarations must match exactly with the function defini-
tion, parameter names may not be omitted from the prototype or differ from
the function definition. Small cares about parameter names in prototypes be-
cause of the “named parameters” feature. One uses prototypes to call forwardly
declared functions. When doing so with named parameters, the compiler must
already know the names of the parameters (and their position in the parameter
list). As a result, the parameter names in a prototype must be equal to the
ones in the definition.

109

Assorted tips

• Working with characters and strings

Strings can be in packed or in unpacked format. In the packed format, each cell
will typically hold four characters (in common implementations, a cell is 32-bit
and a character is 8 bit). In this configuration, the first character in a “pack” of
four is the highest byte of a cell and the fourth character is in the lowest byte of
each cell.

A string must be stored in an array. For an unpacked string, the array must
be large enough to hold all characters in the string plus a terminating zero cell.
That is, in the example below, the variable ustring is defined as having five cells,
which is just enough to contain the string with which it is initialized:

Listing: unpacked string

new ustring[5] = "test"

In a packed string, each cell contains several characters and the string ends with a
zero character. The char operator helps with declaring the array size to contain
the required number of characters . The example below will allocate enough cells
to hold five packed characters. In a typical implementation, there will be two cells
in the array.

Listing: packed string

new pstring[5 char] = !"test"

In other words, the char operators divides its left operand by the number of bytes
that fit in a cell and rounds upwards. Again, in a typical implementation, this
means dividing by four and rounding upwards.

You can design routines that work on strings in both packed and unpacked for-
mats. To find out whether a string is packed or unpacked, look at the first cell
of a string. If its value is either negative or higher than the maximum possible
value of an unpacked character, the string is a packed string. Otherwise it is an
unpacked string.

The code snippet below returns true if the input string is packed and false See also page
99 for proposed
core functions
that operate on
both packed and
unpacked strings

otherwise:

Listing: ispacked function

bool: ispacked(string[])

return !(0 <= string[0] <= ucharmax)

110 . Assorted tips

An unpacked string ends with a full zero cell. The end of a packed string is marked
with only a zero character. Since there may be up to four characters in a 32-bit
cell, this zero character may occur at any of the four positions in the “pack”. The
{ } operator extracts a character from a cell in an array. Basically, one uses the
cell index operator (“[]”) for unpacked strings and the character index operator
(“{ }”) to work on packed strings.

For example, a routine that returns the length in characters of any string (packed
EOS: prede-
fined constant
to mark the End
Of String; it has
the value ’\0’

or unpacked) is:

Listing: my strlen function

my_strlen(string[])

{

new len = 0

if (ispacked(string))

while (string{len} != EOS) /* get character from pack */

++len

else

while (string[len] != EOS) /* get cell */

++len

return len

}

If you make functions to work exclusively on either packed or unpacked strings,
it is a good idea to add an assertion to enforce this condition:

Listing: strupper function

strupper(string[])

{

assert ispacked(string)

for (new i=0; string{i} != EOS; ++i)

string{i} = toupper(string{i})

}

Although, in preceding paragraphs we have assumed that a cell is 32 bits wide
and a character is 8 bits, this should not be relied upon. The size of a cell is

Predefined con-
stants: 80 implementation defined; the maximum and minimum values are in the predefined

constants cellmax and cellmin. There are similar predefined constants for char-
acters. One may safely assume, however, that both the size of a character in bytes
and the size of a cell in bytes are powers of two.

The char operator allows you to determine how many packed characters fit in a
cell. For example:

Assorted tips / 111

#if 4 char == 1

/* code that assumes 4 packed characters per cell */

#else

#if 4 char == 2

/* code that assumes 2 packed characters per cell */

#else

#if 4 char == 4

/* code that assumes 1 packed character per cell */

#else

#assert 0 /* unsupported cell/character size */

#endif

#endif

#endif

• Internationalization

Programming examples in this manual have used the English language for all
output (prompts, messages, . . .), and a Latin character set. This is not necessarily
so; one can, for example, modify the first “hello world” program on page 3 to:

Listing: “hello world” in Greek

main()

printf " ���
	 �̇
������� �̇
�
����� \n"
Small has basic support for non-Latin alphabets, but it only accepts non-Latin
characters in strings and character constants. The Small language requires that
all keywords and symbols (names of functions, variables, tags and other elements)
be encoded in the ascii character set.

For languages whose required character set is relatively small, a common solution
is to use an 8-bit extended ascii character set (the ascii character set is 7-bit,
holding 128 characters). The upper 128 codes of the extended set contain glyphs
specific for the language. For Western European languages, a well known character
set is “Latin-1”, which is standardized as ISO 8859-1 —the same set also goes
by the name “codepage 1252”, at least for Microsoft Windows.∗ Codepages have
been defined for many languages; for example, ISO 8859-2 (“Latin-2”) has glyphs
used in Central and Eastern Europe, and ISO 8859-7 contains the Greek alphabet
in the upper half of the extended ascii set.

Unfortunately, codepage selection can by confusing, as vendors of operating sys-
tems typically created their own codepages irrespective of what already existed.

∗
Codepage 1252 is not exactly the same as Latin-1; Microsoft extended the standardized set to

include glyphs at code positions that Latin-1 marks as “reserved”.

112 . Assorted tips

As a result, for most character sets there exist multiple incompatible codepages.
For example, codepage 1253 for Microsoft Windows also encodes the Greek al-
phabet, but it is incompatible with ISO 8859-7. When writing texts in Greek, it
now becomes important to check what encoding is used, because many Microsoft
Windows applications support both.

When the character set for a language exceeds 256 glyphs, a codepage does not
suffice. Traditionally, the codepage technique was extended by reserving special
“shift” codes in the base character set that switch to a new set of glyphs. The next
character then indicates the specific glyph. In effect, the glyph is now identified
by a 2-byte index. On the other hand, some characters (especially the 7-bit ascii

set) can still be indicated by a single byte. The “Shift-JIS” standard, for the
Japanese character set, is an example for the variable length encoding.

Codepages become problematic when interchanging documents or data with peo-
ple in regions that use a different codepage, or when using different languages in
the same document. Codepages that use “shift” characters complicate the matter
further, because text processing must now take into account that a character may
take either one or two bytes. Scanning through a string from right to left may
even become impossible, as a byte may either indicate a glyph from the base set
(“unshifted”) or it may be a glyph from a shifted set —in the latter case the
preceding byte indicates the shift set, but the meaning of the preceding character
depends on the character before that.

The ISO/IEC 10646 “Universal Character Set” (UCS) standard has the ambituous
goal to eventually include all characters used in all the written languages in the
world, using a 31-bit character set. This solves both of the problems related
to codepages and “shifted” character sets. However, the ISO/IEC body could
not produce a standard in time, and therefore a consortium of mainly American
software manufacturers started working in parallel on a simplified 16-bit character
set called “Unicode”. The rationale behind Unicode was that it would encode
abstract characters, not glyphs, and that therefore 65,536 would be sufficient.† In
practice, though, Unicode does encode glyphs and not long after it appeared, it
became apparent that 65,536 code points would not be enough. To counter this,
later Unicode versions were extended with multiple “planes” and special codes
that select a plane. The combination of a plane selector and the code pointer
inside that plane is called a “surrogate pair”. The first 65,536 code points are in

†
If Unicode encodes characters, an “Unicode font” is a contradictio in terminis —because a font

encodes glyphs.

Assorted tips / 113

the “Basic Multilingual Plane” (BMP) and characters in this set do not need a
plane selector.

Essentially, the introduction of surrogate pairs in the Unicode standard is equiva-
lent to the shift codes of earlier character sets —and it carries some of the problems
that Unicode was intended to solve. The UCS-4 encoding by ISO/IEC 10646 does
not have/need surrogate pairs.

Support for Unicode/UCS-4 in (host) applications and operating systems has
emerged in two different ways: either the internal representation of characters is
multi-byte (typically 16-bit, or 2-byte), or the application stores strings internally
in UTF-8 format, and these strings are converted to the proper glyphs only when
displaying or printing them. Recent versions of Microsoft Windows use Unicode
internally; The Plan-9 operating system pioneerd the UTF-8 encoding approach,
which is now widely used in Unix/Linux. The advantage of UTF-8 encoding as
an internal representation is that it is physically an 8-bit encoding, and therefore
compatible with nearly all existing databases, file formats and libraries. This
circumvents the need for double entry-points for functions that take string pa-
rameters —as is the case in Microsoft Windows, where many functions exist in
an “A”nsi and a “W”ide version. A disadvantage of UTF-8 is that it is a vari-
able length encoding, and many in-memory string operations are therefore clumsy
(and inefficient). That said, with the appearance of surrogate pairs, Unicode has
now also become a variable length encoding.

The Small language requires that its keywords and symbols names are in ascii,
and it allows non-ascii characters in strings. There are five ways that a host
application could support non-ascii characters in strings and character literals:

1 Support codepages: in this strategy the entire complexity of choosing the
correct glyphs and fonts is delegated to the host application. The codepage
support is based on codepage mapping files with a file format of the “cross
mapping tables” distributed by the Unicode consortium.

2 Support Unicode or UCS-4 and let the Small compiler convert scripts that
were written using a codepage to “wide” characters: for this strategy, you need
to set #pragma codepage or use the equivalent compiler option. The compiler
will only correctly translate characters in unpacked strings.

3 Support Unicode or UCS-4 and let the Small compiler convert scripts encoded
in UTF-8 to “wide” characters: when the source file for the Small compiler
is in UTF-8 encoding, the compiler expands characters to Unicode/UCS-4 in
unpacked strings.

114 . Assorted tips

4 Support UTF-8 encoding internally (in the host application) and write the
source file in UTF-8 too: all strings should now be packed strings to avoid the
compiler to convert them.

For most internationalization strategies, as you can see, the host application needs
to support Unicode or UCS-4. As a side note, the Small compiler does not
generate Unicode surrogate pairs. If characters outside the BMP are needed
and the host application (or operating system) does not support the full UCS-4
encoding, the host application must split the 32-bit character cell provided by
the Small compiler into a surrogare pair.

The Small compiler accepts a source file as an UTF-8 encoded text file —see page
Packed & un-
packed strings:
77

137. When the source file is in UTF-8 encoding, “wide” characters in an unpacked
string are stored as multi-byte Unicode/UCS-4 characters; wide characters in a
packed string remain in UTF-8 encoding. To write source files in UTF-8 encoding,
you need, of course, a (programmer’s) editor that supports UTF-8. Codepage
translatio does not apply for files that are in UTF-8 encoding.

For an occasional Unicode character in a literal string, an alternative is that you
Escape sequence:
77 use an escape sequence. As Unicode character tables are usually documented with

hexadecimal glyph indices, the \xhhh; sequence is probably the more conventient
specification of a random Unicode character. For example, the escape sequence
“\x2209” stands for the “6∈” character.

There is a lot more to internationalization than just basic support for extended
character sets, such as formatting date & time fields, reading order (left-to-right
or right-to-left) and locale-driven translation of system messages. The Small

toolkit delegates these issues to the host application.

• Working with tags

The tag name system was invented to add a “usage checking” mechanism to
Tag names: 46

Small. A tag denotes a “purpose” of a value or variable, and the Small compiler
issues a diagnostic message when the tag of an expression does not match the
required tag for the context of the expression.

Many modern computer languages offer variable types, where a type specifies the
memory layout and the purpose of the variable. The programming language then
checks the type equivalence; the pascal language is very strict at checking type
equality, whereas the C programming language is more forgiving. The Small

language does not have types: all variables have the size and the layout of a cell,

Assorted tips / 115

although bit representations in the cell may depend on the purpose of the variable.
In summary:

� a type specifies the memory layout and the range of variables and function
results

� a tagname labels the purpose of variables, constants and function results

Tags in Small are mostly optional. A program that was “fortified” with tag
User-defined op-
erators: 64names on the variable and constant declarations will function identically when all

tag names are removed. One exception is formed by user-defined operators: the
Small compiler uses the tags of the operands to choose between any user-defined
operators and the standard operator.

The snippet below declares three variables and does three assignments, two of
which give a “tag mismatch” diagnostic message:

Listing: comparing apples to oranges

new apple:elstar /* variable "elstar" with tag "apple" */

new orange:valencia /* variable "valencia" with tag "orange" */

new x /* untagged variable "x" */

elstar = valencia /* tag mismatch */

elstar = x /* tag mismatch */

x = valencia /* ok */

The first assignment causes a “tag mismatch” diagnostic as it assigns an “orange”
More tag name
rules: 46tagged variable to a variable with an “apple” tag. The second assignment puts

the untagged value of x into a tagged variable, which causes again a diagnostic.
When the untagged variable is on the left hand of the assignment operator, as
in the third assignment, there is no warning or error message. As variable x is
untagged, it can accept a value of any weak tag.

The same mechanism applies to passing variables or expressions to functions as
function operands —see page 58 for an example. In short, when a function expects
a particular tag name on an argument, you must pass an expression/variable with
a matching tag to that function; but if the function expects an untagged argument,
you may pass in argments with any weak tag.

On occasion, it is necessary to temporarily change the tag of an expression. For
example, with the declarations of the previous code snippet, if you would wish to
compare apples with oranges (recent research indicates that comparing apples to
oranges is not as absurd than popular belief holds), you could use:

if (apple:valencia < elstar)

valencia = orange:elstar

116 . Assorted tips

The test expression of the if statement (between parentheses) compares the vari-
able valencia to the variable elstar. To avoid a “tag mismatch” diagnostic, it
puts a tag override apple: on valencia —after that, the expressions on the left
and the right hands of the > operator have the same tag name: “apple:”. The

lvalue (definition
of ~): 82

second line, the assignment of elstar to valencia, overrides the tag name of
elstar or orange: before the assignment. In an assignment, you cannot override
the tag name of the destination; i.e., the left hand of the = operator. It is an
error to write “apple:valencia = elstar”. In the assignment, valencia is an
“lvalue” and you cannot override the tag name of an lvalue.

As shown earlier, when the left hand of an assignment holds an untagged variable,
the expression on the right hand may have any waek tag name. When used as an
lvalue, an untagged variable is compatible with all weak tag names. Or rather, a
weak tag is silently dropped when it is assigned to an untagged variable or when
it is passed to a function that expects an untagged argument. When a tag name
indicates the bit pattern of a cell, silently dropping a weak tag can hide errors.
For example, the snippet below has an error that is not immediately obvious:

Listing: bad way of using tags

#pragma rational float

new limit = -5.0

new value = -1.0

if (value < limit)

printf("Value %f below limit %f\n", value, limit)

else

printf("Value above limit\n")

Through the “#pragma rational”, all rational numbers receive the “float” tag
name and these numbers are encoded in the 4-byte IEEE 754 format. The snippet
declares two variables, limit and value, both of which are untagged (this is the
error). Although the literal values -5.0 and -1.0 are implicitly tagged with
float:, this weak tag is silently dropped when the values get assigned to the
untagged symbols limit and value. Now, the if statement compares value to
limit as integers, using the built-in standard < operator (a user-defined operator
would be more appropriate to compare two IEEE 754 encoded values). When
run, this code snippet tells us that “Value -1.000000 below limit -5.000000”
—which is incorrect, of course.

To avoid such subtle errors to go undetected, one should use strong tags. A strong
tag is merely a tag name that starts with an upper case letter, such as Float:

instead of float:. A strong tag is never automatically “dropped”, but it may

Assorted tips / 117

still be explicitly overridden. Below is a modified code snippet with the proposed
adaptions:

Listing: strong tags are safer

#pragma rational Float

new Float:limit = -5.0

new Float:value = -1.0

if (value < limit)

printf("Value %f below limit %f\n", _:value, _:limit)

else

printf("Value above limit\n")

Forgetting the Float: tag name in the declaration of the variables limit or value
immediately gives a “tag mismatch” diagnostic, because the literal values -5.0

and -1.0 now have a strong tag name.

printf is a general purpose function that can print strings and values in various
formats. To be general purpose, printf accepts arguments with any weak tag
name, be it apple:’s, orange:’s, or something else. The printf function does
this by accepting untagged arguments —weak tags are dropped when an untagged
argument is expected. Strong tags, however, are never dropped, and in the above
snippet (which uses the original definition of printf), I needed to put an empty
tag override, “_:”, before the variables value and limit in the first printf call.

There is an alternative to untagging expressions with strong tag names in general
purpose functions: adjust the definition of the function to accept both all weak
tags and a selective set of strong tag names. The Small language supports
multiple tag names for every function arguments. The original defintion of printf
(from the file console.inc) is:

native printf(const format[], ...);

By adding both a Float: tag and an empty tag in front of the ellipsis (“...”),
printf will accept arguments with the Float: tag name, arguments without a tag
name and arguments that have a weak tag name. To specify plural tag names,
enclose all tag names without their final colon between braces with a comma
separating the tag names (see the example below). It is necessary to add the
empty tag specification to the list of tag names, because printf would otherwise
only accept arguments with a Float: tag name. Below is the new definition of
the function printf:

native printf(const format[], {Float, _}: ...);

118 . Assorted tips

Plural tags allow you to write a single function that accepts cells with a precisely
specified subset of tags (strong and/or weak). While a function argument may
accept being passed actual arguments with diverse tags, a variable can only have
a single tag —and a formal function argument is a local variable in the body of
the function. In the presence of plural tags, the formal function argument takes
on the tag that is listed first.

On occasion, you may want to check which tag an actual function argument had,
when the argument accepts plural tags. Checking the tag of the formal argument
(in the body of the function) is of no avail, because it will always have the first
tag in the tag list in the declaration of the function argument. You can check the
tag of the actual argument by adding an extra argument to the function, and set
its default value to be the “tagof” of the argument in question. Similar to the

Directives: 55
sizeof operator, the tagof operator has a special meaning when it is applied in
a default value of a function argument: the expression is evaluated at the point
of the function call, instead of at the function definition. This means that the
“default value” of the function argument is the actual tag of the parameter passed
to the function.

Inside the body of the function, you can compare the tag to known tags by, again,
using the tagof operator.

• Concatenating lines

Small is a free format language, but the parser directives must be on a single
Directives: 93

line. Strings may not run over several lines either. When this is inconvenient, you
can use a backslash character (“\”) at the end of a line to “glue” that line with
the next line.

For example:

#define max_path max_drivename + max_directorystring + \

max_filename + max_extension

You also use the concatenation character to cut long literal strings over multiple
lines. Note that the “\” eats up all trailing white space that comes after it and
leading white space on the next line. The example below prints “Hello world”
with one space between the two words (because there is a space between ”Hello”
and the backslash):

print("Hello \

world")

Assorted tips / 119

• A program that generates its own source code

An odd, slightly academic, criterion to quantify the “expressiveness” of a pro-
gramming language is size of the smallest program that, upon execution, regen-
erates its own source code. The rationale behind this criterion is that the shorter
the self-generating program, the more flexible and expressive the language must
be. Programs of this kind have been created for many programming languages
—sometimes surprisingly small, as for languages that have a built-in reflective
capabilities.

Self-generating programs are called “quines”, in honor of the philosopher Willard
Van Orman Quine who wrote self-creating phrases in natural language. The work
of Van Orman Quine became well known through the books “Gödel, Escher, Bach”
and “Metamagical Themas” by Douglas Hofstadter.

The Small quine is in the example below; it is modelled after the famous “C”
quine (of which many variations exist). At 77 characters, it is amongst the smallest
versions for the class of imperative programming languages, and the size can be
reduced to 73 characters by removing four “space” characters that were left in for
readability.

Listing: quine.sma

new s[]="new s[]=%c%s%c; main() printf s,34,s,34"; main() printf s,34,s,34

120

Error and warning messages
appendix a

When the compiler finds an error in a file, it outputs a message giving, in this
order:
� the name of the file
� the line number were the compiler detected the error between parentheses,

directly behind the filename
� the error class (“error”, “fatal error” or “warning”)
� an error number
� a descriptive error message

For example:
demo.c(3) : error 001: expected token: ";", but found "{"

Note: the line number given by the compiler may specify a position behind the
actual error, since the compiler cannot always establish an error before having
analyzed the complete expression.

After termination, the return code of the compiler is:
0 no errors
1 errors found
2 warnings found
3 aborted by user

These return codes may be checked within batch processors (such as the “make”
utility).

• Error categories

Errors are separated into three classes:

Errors Describe situations where the compiler is unable to generate ap-
propriate code. Errors messages are numbered from 1 to 99.

Fatal errors Fatal errors describe errors from which the compiler cannot re-
cover. Parsing is aborted. Fatal error messages are numbered
from 100 to 199.

Warnings Warnings are displayed for unintended compiler assumptions and
common mistakes. Warning messages are numbered from 200 to
299.

Error and warning messages / 121

• Errors

001 expected token: token, but found token
A required token is omitted.

002 only a single statement (or expression) can follow each “case”
Pitfalls: 106
Compound state-
ment: 89

Every case in a switch statement can hold exactly one statement. To put
multiple statements in a case, enclose these statements between braces
(which creates a combound statement).

003 declaration of a local variable must appear in a compound block
Compound state-
ment: 89The declaration of a local variable must appear between braces (“{. . .}”)

at the active scope level.

When the parser flags this error, a variable declaration appears as the
only statement of a function or the only statement below an if, else,
for, while or do statement. Note that, since local variables are ac-
cessible only from (or below) the scope that their declaration appears
in, having a variable declaration as the only statement at any scope is
useless.

004 function name is not implemented
Forward declara-
tion: 61There is no implementation for the designated function. The function

may have been “forwardly” declared —or prototyped— but the full func-
tion definition including a statement, or statement block, is missing.

005 function may not have arguments
The function main() is the program entry point. It may not have argu-
ments.

006 must be assigned to an array
String literals or arrays must be assigned to an array. This error message
may also indicate a missing index (or indices) at the array on the right
side of the “=” sign.

007 operator cannot be redefined
Only a select set of operators may be redefined, this operator is not one
of them. See page 64 for details.

008 must be a constant expression; assumed zero
The size of arrays and the parameters of most directives must be constant
values.

009 invalid array size (negative or zero)
The number of elements of an array must always be 1 or more.

122 . Error and warning messages

010 illegal function or declaration
The compiler expects a declaration of a global variable or of a function
at the current location, but it cannot interpret it as such.

011 invalid outside functions
The instruction or statement is invalid at a global level. Local labels and
(compound) statements are only valid if used within functions.

012 invalid function call, not a valid address
The symbol is not a function.

013 no entry point (no public functions)
The file does not contain a main function or any public function. The
compiled file thereby does not have a starting point for the execution.

014 invalid statement; not in switch
The statements case and default are only valid inside a switch state-
ment.

015 “default” must be the last clause in switch statement
Small requires the default clause to be the last clause in a switch

statement.

016 multiple defaults in “switch”
Each switch statement may only have one default clause.

017 undefined symbol symbol
The symbol (variable, constant or function) is not declared.

018 initialization data exceeds declared size
Initialization: 43

An array with a specified size is initialized, but the number of initiallers
exceeds the number of elements specified (e.g. “arr[3]={1,2,3,4};”
the array is specified to have three elements, but there are four ini-
tiallers).

019 not a label: name
A goto statement branches to a symbol that is not a label.

020 invalid symbol name
Symbol name
syntax: 75 A symbol may start with a letter, an underscore or an “at” sign (“@”)

and may be followed by a series of letters, digits, underscore characters
and “@” characters.

021 symbol already defined: identifier
The symbol was already defined at the current level.

Error and warning messages / 123

022 must be lvalue (non-constant)
The symbol that is altered (incremented, decremented, assigned a value,
etc.) must be a variable that can be modified (this kind of variable is
called an lvalue). Functions, string literals, arrays and constants are no
lvalues. Variables declared with the “const” attribute are no lvalues
either.

023 array assignment must be simple assignment
When assigning one array to another, you cannot combine an arithmetic
operation with the assignment (e.g., you cannot use the “+=” operator).

024 “break” or “continue” is out of context
The statements break and continue are only valid inside the context
of a loop (a do, for or while statement). Unlike the languages C/C++

and Java, break does not jump out of a switch statement.

025 function heading differs from prototype
The number of arguments given at a previous declaration of the function
does not match the number of arguments given at the current declara-
tion.

026 no matching “#if...”
The directive #else or #endif was encountered, but no matching #if

directive was found.

027 invalid character constant
Escape sequence:
77One likely cause for this error is the occurrence of an unknown escape

sequence, like “\x”. Putting multiple characters between single quotes,
as in ’abc’ also issues this error message. A third cause for this error
is a situation where a character constant was expected, but none (or a
non-character expression) were provided.

028 invalid subscript (not an array or too many subscripts): identi-
fier
The subscript operators “[” and “]” are only valid with arrays. The num-
ber of square bracket pairs may not exceed the number of dimensions of
the array.

029 invalid expression, assumed zero
The compiler could not interpret the expression.

030 compound statement not closed at the end of file
An unexpected end of file occurred. One or more compound statements

124 . Error and warning messages

are still unfinished (i.e. the closing brace “}” has not been found).

031 unknown directive
The character “#” appears first at a line, but no valid directive was
specified.

032 array index out of bounds
The array index is larger than the highest valid entry of the array.

033 array must be indexed (variable name)
An array as a whole cannot be used in a expression; you must indicate
an element of the array between square brackets.

034 argument does not have a default value (argument index)
You can only use the argument placeholder when the function definition
specifies a default value for the argument.

035 argument type mismatch (argument index)
The argument that you pass is different from the argument that the func-
tion expects, and the compiler cannot convert the passed-in argument
to the required type. For example, you cannot pass the literal value “1”
as an argument when the function expects an array or a reference.

036 empty statement
Empty com-
pound block:
89

The line contains a semicolon that is not preceded by an expression.
Small does not support a semicolon as an empty statement, use an
empty compound block instead.

037 invalid string (possibly non-terminated string)
A string was not well-formed; for example, the final quote that ends
a string is missing, or the filename for the #include directive was not
enclosed in double quotes or angle brackets.

038 extra characters on line
There were trailing characters on a line that contained a directive (a
directive starts with a # symbol, see page 93).

039 constant symbol has no size
A variable has a size (measured in a number of cells), a constant has
no size. That is, you cannot use a (symbolic) constant with the sizeof

operator, for example.

040 duplicate “case” label (value value)
A preceding “case label” in the list of the switch statement evaluates
to the same value.

Error and warning messages / 125

041 invalid ellipsis, array size is not known
You used a syntax like “arr[] = { 1, ... };”, which is invalid,
because the compiler cannot deduce the size of the array from the dec-
laration.

042 invalid combination of class specifiers
A function is denoted as both “public” and “native”, which is unsup-
ported.

043 character constant exceeds range for packed string
Usually an attempt to store a Unicode character in a packed string where
a packed character is 8-bits.

044 mixing named and positional parameters
You must either use named parameters or positional parameters for all
parameters of the function.

045 too many function arguments
The maximum number of function arguments is currently limited to 64.

046 unknown array size (variable name)
For array assignment, the size of both arrays must be explicitly defined,
also if they are passed as function arguments.

047 array sizes do not match, or destination array is too small
For array assignment, the arrays on the left and the right side of the
assignment operator must have the same number of dimensions. In ad-
dition:

� for multi-dimensional arrays, both arrays must have the same size;

� for single arrays with a single dimension, the array on the left side of
the assignment operator must have a size that is equal or bigger than
the one on the right side.

When passing arrays to a function argument, these rules also hold for
the array that is passed to the function (in the function call) versus the
array declared in the function definition.

When a function returns an array, all return statements must specify
an array with the same size and dimensions.

048 array dimensions do not match
For an array assignment, the dimensions of the arrays on both sides of
the “=” sign must match; when passing arrays to a function argument,

126 . Error and warning messages

the arrays passed to the function (in the function call) must match with
the definition of the function arguments.

When a function returns an array, all return statements must specify
an array with the same size and dimensions.

049 invalid line continuation
Single line com-
ment: 75 A line continuation character (a backslash at the end of a line) is at

an invalid position, for example at the end of a file or in a single line
comment.

050 invalid range
A numeric range with the syntax “n1 .. n2”, where n1 and n2 are
numeric constants, is invalid. Either one of the values in not a valid
number, or n1 is not smaller than n2.

051 invalid subscript, use “[]” operators on major dimensions
You can use the “array character index” operator (braces: “{ }” only
for the last dimension. For other dimensions, you must use the cell index
operator (square brackets: “[]”).

052 multi-dimensional arrays must be fully initialized
If an array with more than one dimension is initialized at its declaration,
then there must be equally many literal vectors/sub-arrays at the right
of the equal sign (“=”) as specified for the major dimension(s) of the
array.

053 exceeding maximum number of dimensions
The current implementation of the Small compiler only supports arrays
with one or two dimensions.

054 unmatched closing brace
A closing brace (“}”) was found without matching opening brace (“{”).

055 start of function body without function header
An opening brace (“{”) was found outside the scope of a function. This
may be caused by a semicolon at the end of a preceding function header.

056 local variables and function arguments cannot be public
A local variable or a function argument starts with the character “@”,
which is invalid.

057 Unfinished expression before compiler directive
Compiler directives may only occur between statements, not inside a

Error and warning messages / 127

statement. This error typically occurs when an expression statement is
split over multiple lines and a compiler directive appears between the
start and the end of the expression. This is not supported.

058 duplicate argument; same argument is passed twice
Named versus
positional pa-
rameters: 53

In the function call, the same argument appears twice, possibly through
a mixture of named and positional parameters.

059 function argument may not have a default value (variable name)
All arguments of public functions must be passed explicitly. Pub-
lic functions are typically called from the host application, who has no
knowledge of the default parameter values. Arguments of user defined
operators are implied from the expression and cannot be inferred from
the default value of an argument.

060 multiple “#else” directives between “#if . . . #endif
Two or more #else directives appear in the body between the matching
#if and #endif.

061 “#elseif” directive follows an “#else” directive
All #elseif directives must appear before the #else directive. This
error may also indicate that an #endif directive for a higher level is
missing.

062 number of operands does not fit the operator
When redefining an operator, the number of operands that the operator
has (1 for unary operators and 2 for binary operators) must be equal to
the number of arguments of the operator function.

063 operator requires that the function result has a “bool” tag
Logical and relational operators are defined as having a result that is
either true (1) or false (0) and having a “bool” tag. A user defined
operator should adhere to this definition.

064 cannot change predefined operators
One cannot define operators to work on untagged values, for example,
because Small already defines this operation.

065 function argument may only have a single tag (argument num-
ber)
In a user defined operator, a function argument may not have multiple
tags.

128 . Error and warning messages

066 function argument may not be a reference argument or an array
(argument number)
In a user defined operator, all arguments must be cells (non-arrays) that
are passed “by value”.

067 variable cannot be both a reference and an array (variable
name)
A function argument may be denoted as a “reference” or as an array,
but not as both.

068 invalid rational number precision in #pragma
The precision was negative or too high. For floating point rational num-
bers, the precision specification should be omitted.

069 rational number format already defined
This #pragma conflicts with an earlier #pragma that specified a different
format.

070 rational number support was not enabled
#pragma ratio-
nal: 96 A rational literal number was encountered, but the format for rational

numbers was not specified.

071 user-defined operator must be declared before use (function
Forward declara-
tion: 61

name)
Like a variable, a user-defined operator must be declared before its first
use. This message indicates that prior to the declaration of the user-
defined operator, an instance where the operator was used on operands
with the same tags occurred. This may either indicate that the program
tries to make mixed use of the default operator and a user-defined oper-
ator (which is unsupported), or that the user-defined operator must be
“forwardly declared”.

072 “sizeof” operator is invalid on “function” symbols
You used something like “sizeof MyCounter” where the symbol “My-
Counter” is not a variable, but a function. You cannot request the size
of a function.

073 function argument must be an array (argument name)
The function argument is a constant or a simple variable, but the func-
tion requires that you pass an array.

074 #define pattern must start with an alphabetic character
Any pattern for the #define directive must start with a letter, an un-

Error and warning messages / 129

derscore (“_”) or an “@”-character. The pattern is the first word that
follows the #define keyword.

075 input line too long (after substitutions)
Either the source file contains a very long line, or text substitutions make
a line that was initially of acceptable length grow beyond its bounds.
This may be caused by a text substitution that causes recursive substi-
tution (the pattern matching a portion of the replacement text, so that
this part of the replacement text is also matched and replaced, and so
forth).

076 syntax error in the expression, or invalid function call
The expression statement was not recognized as a valid statement (so it
is a “syntax error”). From the part of the string that was parsed, it looks
as if the source line contains a function call in a “procedure call” syntax
(omitting the parentheses), but the function result is used —assigned to
a variable, passed as a parameter, used in an expession. . .

077 malformed UTF-8 encoding, or corrupted file: filename
The file starts with an UTF-8 signature, but it contains encodings that
are invalid UTF-8. If the source file was created by an editor or converter
that supports UTF-8, the UTF-8 support is non-conforming.

078 function uses both “return” and “return ¡value¿”
The function returns both with and without a return value. The function
should be consistent in always returning with a function result, or in
never returning a function result.

079 inconsistent return types (array & non-array)
The function returns both values and arrays, which is not allowed. If a
function returns an array, all return statements must specify an array
(of the same size and dimensions).

080 unknown symbol, or not a constant symbol (symbol name)
Where a constant value was expected, an unknown symbol or a non-
constant symbol (variable) was found.

081 cannot take a tag as a default value for an indexed array pa-
rameter (symbol name)
The tagof operator was used on an array parameter where the array
also had an index. This is unsupported.

• Fatal Errors

130 . Error and warning messages

100 cannot read from file: filename
The compiler cannot find the specified file or does not have access to it.

101 cannot write to file: filename
The compiler cannot write to the specified output file, probably caused
by insufficient disk space or restricted access rights (the file could be
read-only, for example).

102 table overflow: table name
An internal table in the Small parser is too small to hold the required
data. Some tables are dynamically growable, which means that there
was insufficient memory to resize the table. The “table name” is one of
the following:

“staging buffer”: the staging buffer holds the code generated for an
expression before it is passed to the peephole optimizer. The staging
buffer grows dynamically, so an overflow of the staging buffer basically
is an “out of memory” error.

“loop table”: the loop table is a stack used with nested do, for, and
while statements. The table allows nesting of these statements up to 24
levels.

“literal table”: this table keeps the literal constants (numbers, strings)
that are used in expressions and as initiallers for arrays. The literal table
grows dynamically, so an overflow of the literal table basically is an “out
of memory” error.

“compiler stack”: the compiler uses a stack to store temporary informa-
tion it needs while parsing. An overflow of this stack is probably caused
by deeply nested (or recursive) file inclusion. The compiler stack grows
dynamically, so an overflow of the compiler stack basically is an “out of
memory” error.

“option table”: in case that there are more options on the command line
or in the response file than the compiler can cope with.

103 insufficient memory
General “out of memory” error.

104 invalid assembler instruction symbol
An invalid opcode in an #emit directive.

Error and warning messages / 131

105 numeric overflow, exceeding capacity
A numeric constant, notably a dimension of an array, is too large for the
compiler to handle. For example, when compiled as a 16-bit application,
the compiler cannot handle arrays with more than 32767 elements.

106 compaction buffer overflow
Compact encoding may in some particular cases result in files that would
actually be bigger than the non-compact encoding. The abstract ma-
chine cannot handle this, as it unpacks the P-code “in place”. The
solution to this error is to compile the file with plain (“non-compact”)
encoding —see page 95.

107 too many error/warning messages on one line
A single line that causes several error/warning messages is often an in-
dication that the Small parser is unable to “recover” from an earlier
error. In this situation, the parser is unlikely to make any sense of the
source code that follows —producing only (more) inappropriate error
messages. Therefore, compilation is halted.

108 codepage mapping file not found
#pragma code-
page: 95The file for the codepage translation that was specified with the -c com-

piler option or the #pragma codepage directive could not be loaded.

109 invalid path: path name
A path, for example for include files or codepage files, is invalid.

110 assertion failed: expression
#assert direc-
tive: 93Compile-time assertion failed.

111 user error: message
#error directive:
93The parser fell on an #error directive.

• Warnings

200 symbol is truncated to number characters
The symbol is longer than the maximum symbol length. The maximum
length of a symbol depends on wether the symbol is native, public or
neither. Truncation may cause different symbol names to become equal,
which may cause error 021 or warning 219.

201 redefinition of constant/macro (symbol name)
The symbol was previously defined to a different value, or the text sub-

132 . Error and warning messages

stitution macro that starts with the prefix name was redefined with a
different substitution text.

202 number of arguments does not match definition
At a function call, the number of arguments passed to the function (ac-
tual arguments) differs from the number of formal arguments declared in
the function heading. To declare functions with variable argument lists,
use an ellipsis (...) behind the last known argument in the function
heading; for example: print(formatstring,...); (see page 59).

203 symbol is never used: identifier
A symbol is defined but never used. Public functions are excluded from
the symbol usage check (since these may be called from the outside).

204 symbol is assigned a value that is never used: identifier
A value is assigned to a symbol, but the contents of the symbol are never
accessed.

205 redundant code: constant expression is zero
Where a conditional expression was expected, a constant expression with
the value zero was found, e.g. “while (0)” or “if (0)”. The the
conditional code below the test is never executed, and it is therefore
redundant.

206 redundant test: constant expression is non-zero
Where a conditional expression was expected, a constant expression with
a non-zero value was found, e.g. if (1). The test is redundant, because
the conditional code is always executed.

207 unknown “#pragma”
The compiler ignores the pragma. The #pragma directives may change
between compilers of different vendors and between different versions of
a compiler of the same version.

208 function with tag result used before definition, forcing reparse
User-defined op-
erators: 64
Forward declara-
tion: 61

When a function is “used” (invoked) before being declared, and that
function returns a value with a tag name, the parser must make an
extra pass over the source code, because the presence of the tag name
may change the interpretation of operators (in the presence of user-
defined operators). You can speed up the parsing/compilation process
by declaring the relevant functions before using them.

Error and warning messages / 133

209 function should return a value
The function does not have a return statement, or it does not have
an expression behind the return statement, but the function’s result is
used in a expression.

210 possible use of symbol before initialization: identifier
A local (uninitialized) variable appears to be read before a value is as-
signed to it. The compiler cannot determine the actual order of reading
from and storing into variables and bases its assumption of the execution
order on the physical appearance order of statements an expressions in
the source file.

211 possibly unintended assignment
Where a conditional expression was expected, the assignment operator
(=) was found instead of the equality operator (==). As this is a frequent
mistake, the compiler issues a warning. To avoid this message, put
parentheses around the expression, e.g. if ((a=2)).

212 possibly unintended bitwise operation
Where a conditional expression was expected, a bitwise operator (& or |)
was found instead of a Boolean operator (&& or ||). In situations where
a bitwise operation seems unlikely, the compiler issues this warning. To
avoid this message, put parentheses around the expression.

213 tag mismatch
Tags are dis-
cussed on page
46

A tag mismatch occurs when:

� assigning to a tagged variable a value that is untagged or that has a
different tag

� the expressions on either side of a binary operator have different tags

� in a function call, passing an argument that is untagged or that has a
different tag than what the function argument was defined with

� indexing an array which requires a tagged index with no tag or a wrong
tag name

214 possibly a “const” array argument was intended: identifier
Arrays are always passed by reference. If a function does not modify the
array argument, however, the compiler can sometimes generate more
compact and quicker code if the array argument is specifically marked
as “const”.

134 . Error and warning messages

215 expression has no effect
The result of the expression is apparently not stored in a variable or used
in a test. The expression or expression statement is therefore redundant.

216 nested comment
Small does not support nested comments.

217 loose indentation
Statements at the same logical level do not start in the same column;
that is, the indents of the statements are different. Although Small is
a free format language, loose indentation frequently hides a logical error
in the control flow.
The compiler can also incorrectly assume loose indentation if the tab

size with which you indented the source code differs from the assumed
size, see #pragma tabsize on page 97 or the compiler option -t on page
138.

218 old style prototypes used with optional semicolon
When using “optional semicolons”, it is preferred to explicitly declare
forward functions with the forward keyword than using terminating
semicolon.

219 local variable identifier shadows a symbol at a preceding level
A local variable has the same name as a global variable, a function, a
function argument, or a local variable at a lower precedence level. This
is called “shadowing”, as the new local variable makes the previously
defined function or variable inaccessible.

220 expression with tag override must appear between parentheses
In a case statement and in expressions in the conditional operator (“ ?

: ”), any expression that has a tag override should be enclosed between
parentheses, to avoid the colon to be misinterpreted as a separator of the
case statement or as part of the conditional operator.

221 label name identifier shadows tag name
A code label (for the goto instruction) has the same name as a previously
defined tag. This may indicate a faultily applied tag override; a typical
case is an attempt to apply a tag override on the variable on the left of
the = operator in an assignment statement.

222 number of digits exceeds rational number precision
A literal rational number has more decimals in its fractional part than

Error and warning messages / 135

the precision of a rational number supports. The remaining decimals are
ignored.

223 redundant “sizeof”: argument size is always 1 (symbol name)
A function argument has a as its default value the size of another ar-
gument of the same function. The “sizeof” default value is only useful
when the size of the referred argument is unspecified in the declaration
of the function; i.e., if the referred argument is an array.

224 indeterminate array size in “sizeof” expression (symbol name)
#if . . . #else
. . . #endif: 94

The operand of the sizeof operator is an array with an unspecified size.
That is, the size of the variable cannot be determined at compile time.
If used in an “if” instruction, consider a conditionally compiled section,
replacing if by #if.

225 unreachable code
The indicated code will never run, because an instruction before (above)
it causes a jump out of the function, out of a loop or elsewhere. Look
for return, break, continue and goto instructions above the indicated
line.

226 a variable is assigned to itself (symbol name)
There is a statement like “x = x” in the code. The parser checks for
self assignments after performing any text and constant substitutions,
so the left and right sides of an assignment may appear to be different
at first sight. For example, if the symbol “TWO” is a constant with the
value 2, then “var[TWO] = var[2]” is also a self-assignment.

Self-assignments are, of course, redundant, and they may hide an error
(assignment to the wrong variable, error in declaring constants).

Note that the Small parser is limited to performing “static checks”
only. In this case it means that it can only compare array assignments
for self-assignment with constant array indices.

227 more initiallers than enum fields
An array whose size is declared with an enum symbol contains more
values/fields as initiallers than the enumeration defines.

228 length of initialler exceeds size of the enum field
An array whose size is declared with an enum symbol, and the relevant
enumeration field has a size. The initialler in the array contains more
values than the size of the enumeration field allows.

136 . Error and warning messages

229 index tag mismatch (symbol name)
When indexing an array, the expression used as the index has a different
tag than what the one in the declaration of the array. See pages 26 and
46 for an explanation and examples.

137

The compiler
appendix b

Many applications that embed the Small scripting language use the stand-alone
compiler that comes with the Small toolkit. The Small compiler is a command-
line utility, meaning that you must run it from a “console window”, a terminal/
shell, or a “DOS box” (depending on how your operating system calls it).

• Usage

Assuming that the Small compiler is called “sc” or “sc.exe”, the command line
syntax is:

sc <filename> [more filenames...] [options]

The input file name is any legal filename. If no extension is given, “.SMA” or
“.small” is assumed. The compiler creates an output file with, by default, the
same name as the input file and the extension “.AMX”.

After switching to the directory with the sample programs, the command:
sc hello

should compile the very first “hello world” example (page 3). Should, because the
command implies that:
� the operating system can locate the “sc” program —you may need to add it to

the search path;
� the Small compiler is able to determine its own location in the file system so

that it can locate the include files —a few operating systems do not support
this and require that you use the -i option (see below).

• Input file

The input file for the Small compiler, the “source code” file for the script/
program, must be a plain text file. All reserved words and all symbol names
(names for variables, functions, symbolic constants, tags, . . .) must use the ascii

character set. Literal strings, i.e text between quotes, may be in extended ascii,
such as one of the sets standardized in the ISO 8859 norm —ISO 8859-1 is the
well known “Latin 1” set.

The Small compiler also supports UTF-8 encoded text files, which are practical in
Packed & un-
packed strings:
77
Character con-
stants: 77

an environment based on Unicode or UCS-4. The Small compiler only recognizes
UTF-8 encoded characters inside unpacked strings and character constants. The

138 . The compiler

compiler interprets the syntax rules for UTF-8 files strictly; non-conforming UTF-
8 files are not recognized. The input file may have, but does not require, a “Byte
Order Mark” signature; the compiler recognizes the UTF-8 format based on the
file’s content.

• Options

Options start with a dash (“-”) or, on Microsoft Windows and DOS, with a
forward slash (“/”). In other words, all platforms accept an option written as
“-a” (see below for the purpose of this option) and the DOS/Windows platforms
accept “/a” as an alternative way to write “-a”.

All options should be separated by at least one space.

Many options accept a value —which is sometimes mandatory. A value may be
separated from the option letter by a colon or an equal sign (a “:” and a “=”
respectively), or the value may be glued to the option letter. Three equivalent
options to set the debug level to two are thus:

ptpt

� -d2

� -d:2

� -d=2

The options are:

-a Assembler: generate a text file with the pseudo-assembler code for
the Small abstract machine, instead of binary code.

-C+/- Compact encoding of the binary file, which reduces the size a the
output file typically to less than half the original size. Use -C+ to
enable it and -C- to revert to “plain” encoding. The option -C

(without + or − suffix) toggles the current setting.

-cname Codepage: set the codepage for translating the source file from
extended ascii to Unicode/UCS-4. The default is no translation.
The name parameter can specify a full path to a “mapping file” or
just the identifier of the codepage —in the latter case, the compiler
prefixes the identifier with the letters “cp”, appends the extension
“.txt” and loads the mapping file from a system directory.

The compiler / 139

-Dpath Directory: the “active” directory, where the compiler should search
for its input files and store its output files.

This option is not supported on every platform. To verify whether
the Small compiler supports this option, run the compiler without
any option or filename on the command line. The compiler will
then list its usage syntax and all available options in alphabetical
order. If the -D switch is absent, the option is not available.

-dlevel Debug level: 0 = none, 1 = bounds checking and assertions only,
2 = full symbolic information, 3 = full symbolic information and
optimizations disabled.

When the debug level is 2 or 3, the Small compiler also prints the
estimated number of stack/heap space required for the program.

-efilename Error file: set the name of the file into which the compiler must
write any warning and error messages; when set, there is no output
to the screen.

-Hvalue “HWND” (Microsoft Windows version only): the compiler can op-
tionally post a message to the specified window handle upon com-
pletion of the P-code generation. Host applications that invoke the
Small compiler can wait for the arrival of this message or signal
the user of the completion of the compile.

The message number that is sent to the window is created with the
Microsoft Windows SDK function RegisterWindowMessage using
the name “SCNotify”. The wParam of the message holds the com-
piler return code: 0 = success, 1 = warnings, 2 = errors (plus
possibly warnings), 3 = compilation aborted by the user.

-ipathname Include path: set the path where the compiler can find the include
files. This option may appear multiple times at the command line,
to allow you to set several include paths.

-l Listing: perform only the file reading and preprocessing steps; for
example, to verify the effect of the text substitution macros and
the conditionally compiled/skipped sections.

-ofilename Output file: set the name and path of the binary output file.

-pfilename Prefix file: the name of the “prefix file”, this is a file that is parsed
before the input file (as a kind of implicit “include file”). If used,

140 . The compiler

this option overrides the default include file “default.inc”. The
-p option on its own (without a filename) disables the processing
of any implicit include file.

-rfilename Report: enable the creation of the report and optionally set the file-
name to which the extracted documentation and a cross-reference
report will be written.

The report is in “XML” format. The filename parameter is op-
tional; if not specified, the report file has the same name as the
input file with the extension “.XML”.

-Svalue Stack size: the size of the stack and the heap in cells.

-svalue Skip count: the number of lines to skip in the input file before
starting to compile; for example, to skip a “header” in the source
file which is not in a valid Small syntax.

-tvalue tab size: the number of space characters to use for a tab character.
When set to zero (i.e. option -t0) the compiler will no longer issue
warning 217 (loose indentation).

-v Verbose: display additional messages and information during the
compilation.

-wvalue+/- Warning control: the warning number following the “-w” is enabled
Warnings: 131 or disabled, depending on whether a “+” or a “-” follows the num-

ber. When a “+” or “-” is absent, the warning status is toggled.
For example, -w225- disables the warning for “unreachable code”,
-w225+ enables it and -w225 toggles between enabled/disabled.

Only warnings can be disabled (errors and fatal errors cannot be
disabled). By default, all warnings are enabled.

-\ Control characters start with “\” (for the sake of similarity with
C, C++ and Java).

-^ Control characters start with “ˆ” (for compatibility with earlier
versions of Small).

-;+/- With -;+ every statement is required to end with a semicolon; with
-;-, semicolons are optional to end a statement if the statement is
the last on the line. The option -; (without + or − suffix) toggles
the current setting.

The compiler / 141

sym=value define constant “sym” with the given (numeric) value, the value is
optional;

@filename read (more) options from the specified “response file”.

• Response file

To support operating systems with a limited command line length (e.g., Microsoft
DOS), the Small compiler supports “response files”. A response file is a text file
that contains the options that you would otherwise put at the command line.
With the command:

sc @opts.txt prog.sma

the Small compiler compiles the file “prog.sma” using the options that are listed
in the response file “opts.txt”.

• Configuration file

On platforms that support it (currently Microsoft DOS, Microsoft Windows and
Linux), the compiler reads the options in a “configuration file” on startup. The
configuration file must have the name “sc.cfg” and it must reside in the same
directory as the compiler executable program.

In a sense, the configuration file is an implicit response file. Options specified on
the command line may overrule those in the configuration file.

142

Rationale
appendix c

The first issue in the presentation of a new computer language should be: why a
new language at all?

Indeed, I did look at several existing languages before I designed my own. Many
little languages were aimed at scripting the command shell (TCL, Perl, Python).
Other languages were not designed as extension languages, and put the burden
to embedding solely on the host application.

As I initially attempted to use Java as an extension language (rather than build my
own, as I have done now), the differences between Small and Java are illustrative
for the almost reciprocal design goals of both languages. For example, Java pro-
motes distributed computing where “packages” reside on diverse machines, Small

is designed so that the compiled applets can be easily stored in a compound file
together with other data. Java is furthermore designed to be architecture neutral
and application independent, inversely Small is designed to be tightly coupled
with an application; native functions are a taboo to some extent in Java (at least,
it is considered “impure”), whereas native functions are “the reason to be” for
Small. From the viewpoint of Small, the intended use of Java is upside down:
native functions are seen as an auxiliary library that the application —in Java—
uses; in Small, native functions are part of “the application” and the Small

program itself is a set of auxiliary functions that the application uses.

A language for scripting applications: Small is targeted as an extension lan-
guage, meant to write application-specific macros or subprograms with. Small is
not the appropriate language for implementing business applications or operating
systems in. Small is designed to be easily integrated with, and embedded in,
other systems/applications.

As an extension language, Small programs typically manipulate objects of the
host application. In an animation system, Small scripts deal with sprites, events
and time intervals; in a communication application, Small scripts handle packets
and connections. I assumed that the host application will make (a subset of)
its resources and functionality available via functions, handles, magic cookies. . .
in a similar way that a contemporary operating system provides an interface to
processes written in C/C++ —e.g., the Win32 API (“handles everywhere”) or
GNU/Linux’ “glibc”. To that end, Small has a simple and efficient interface to
the “native” functions of the host application. A Small script manipulates data
objects in the host application through function calls, but it cannot access the

Rationale / 143

data of the host application directly.

The first and foremost criterions for the Small language were execution speed
and reliability. Reliability in the sense that a Small program should not be able
to crash the application or tool in which it is embedded —at least, not easily.
Although this limits the capabilities of the language significantly, the advantages
are twofold:
� the application vendor can rest assured that its application will not crash due

to user additions or macros,
� the user is free to experiment with the language with no (or little) risk of

damaging the application files.

Speed is essential: Small programs would probably run in an abstract machine,
and abstract machines are notoriously slow. I had to make a language that has
low overhead and a language for which a fast abstract machine can be written.
Speed should also be reliable, in the sense that a Small script should not slow
down over time or have an occaisional performance hiccup. Consequently, Small

excludes any required “background process”, such as garbage collection, and the
core of the abstract machine does not implicitly allocate any system or application
resources while it runs. That is, Small does not allocate memory or open files,
not without the help of a native function that the script calls explicitly.

As Dennis Ritchie said, by intent the C language confines itself to facilities that
can be mapped relatively efficiently and directly to machine instructions. The
same is true for Small, and this is also a partial explication why Small looks so
much like C.

A brief analysis showed that the instruction decoding logic for an abstract ma-
chine would quickly become the bottleneck in the performance of the abstract
machine. To keep the decoding simple, each opcode should have the same size
(excluding operands), and the opcode should fully specify the instruction (includ-
ing the addressing methods, size of the operands, etc.). That meant that for each
operation on a variable, the abstract machine needed a separate opcode for every
combination of variable type, storage class and access method (direct, or derefer-
enced). For even three types (int, char and unsigned int), two storage classes
(global and local) and three access methods (direct, indirect or indexed), a total
of 18 opcodes (3*2*3) are needed to simply fetch the value of a variable.

At the same time, to keep the abstract machine small and manageable, I set a
maximum of approximately 100 instructions.∗ With 18 opcodes to load a variable

∗
136 Opcodes are defined at this writing. To exploit performance gains by forcing proper align-

144 . Rationale

in a register, 18 more to store a register into a variable, another 18 to get the
address of a variable, etc. . . I was quickly approaching (and exceeding) my limit
of a hundred opcodes.

The languages bob and rexx inspired me to design a typeless language. This
saved me a lot of opcodes. At the same time, the language could no longer be
called a “subset of C”. I was changing the language. Why, then, not go a foot
further in changing the language? This is where a few more design guidelines
came into play:
� give the programmer a general purpose tool, not a special purpose solution
� avoid error prone language constructs; promote error checking
� be pragmatic

A general purpose tool: Small is targeted as an extension language, without
specifying exactly what it will extent. Typically, the application or the tool that
uses Small for its extension language will provide many, optimized routines or
commands to operate on its native objects, be it text, database records or ani-
mated sprites. The extension language exists to permit the user to do what the
application developer forgot, or decided not to include. Rather than providing
a comprehensive library of functions to sort data, match regular expressions, or
draw cubic Bézier splines, Small should supply a (general purpose) means to use,
extend and combine the specific (“native”) functions that an application provides.

Small lacks a comprehensive standard library. By intent, Small also lacks fea-
tures like pointers, dynamic memory allocation, direct access to the operating
system or to the hardware, that are needed to remain competitive in the field
of general purpose application or system programming. You cannot build linked
lists or dynamic tree data structures in Small, and neither can you access any
memory beyond the boundaries of the abstract machine. That is not to say that
a Small program can never use dynamic, sorted symbol tables, or change a pa-
rameter in the operating system; it can do that, but it needs to do so by calling
a “native” function that an application provides to the abstract machine.

In other words, if an application chooses to implement the well known peek and
poke functions (from BASIC) in the abstract machine, a Small program can
access any byte in memory, insofar the operating system permits this. Likewise,
an application can provide native functions that insert, delete or search symbols

ment of memory words, the current abstract machine uses 32-bit opcodes. There is no technical

limit on the number of opcodes, but in the interest of a small footprint, the number of opcodes

should be restricted.

Rationale / 145

in a table and allows several operations on them. The proposed core functions
getproperty and setproperty are an example of native functions that build a
linked list in the background.

Promote error checking: As you may have noticed, one of the foremost design
criterions of the C language, “trust the programmer”, is absent from my list of
design criterions. Users of script languages may not be experienced programmers;
and even if they are, Small will probably not be their primary language. Most
Small programmers will keep learning the language as they go, and will even
after years not have become experts. Enough reason, hence, to replace error
prone elements from the C language (pointers) with saver, albeit less general,
constructs (references).∗ References are copied from C++. They are nothing else
than pointers in disguise, but they are restricted in various, mostly useful, ways.
Turn to a C++ book to find more justification for references.

I find it sad that many, even modern, programming languages have so little built-
in, or easy to use, support for confirming that programs do as the programmer
intended. I am not referring to theoretical correctness (which is too costly to
achieve for anything bigger than toy programs), but practical, easy to use, veri-
fication mechanisms as a help to the programmer. Small provides both compile
time and execution time assertions to use for preconditions, postconditions and
invariants.

The typing mechanism that most programming languages use is also an automatic
“catcher” of a whole class of bugs. By virtue of being a typeless language, Small

lacked these error checking abilities. This was clearly a weakness, and I created
the “tag” mechanism as an equivalent for verifying function parameter passing,
array indexing and other operations.

The quality of the tools: the compiler and the abstract machine, also have a great
impact on the robustness of code —whatever the language. Although this is only
very loosely related to the design of the language, I set out to build the tools
such that they promote error checking. The warning system of Small goes a step
beyond simply reporting where the parser fails to interpret the data according to
the language grammar. At several occasions, the compiler runs checks that are
completely unrelated to generating code and that are implemented specifically to
catch possible errors. Likewise, the “debugger hook” is designed right into the

∗
You should see this remark in the context of my earlier assertion that many “Small” programmers

will be novice programmers. In my (teaching) experience, novice programmers make many

pointer errors, as opposed to experienced C/C++ programmers.

146 . Rationale

abstract machine, it is not an add-on implemented as an after-thought.

Be pragmatic: The object-oriented programming paradigm has not entirely
lived up to its promise, in my opinion. On the one hand, OOP solves many tasks
in an easier or cleaner way, due to the added abstraction layer. On the other
hand, contemporary object-oriented languages leave you struggling with the lan-
guage as much as with the task at hand. Jean-Paul Tremblay and Paul Sorenson
criticize the C language’s large operator set with the argument that studies have
shown that people have difficulty with memorizing and understanding deep hierar-
chies.† The same argument also applies to the class hierarchies in object-oriented
programming libraries. Object-oriented programming is not a solution for a non-
expert programmer with little patience for artificial complexity. The criterion “be
pragmatic” is a reminder to seek solutions, not elegancy. Sarcastically, perhaps,
I have attempted to make Small a subject oriented language.

• Practical design criterions

The fact that Small looks so much like C cannot be a coincidence, and it isn’t.
Small started as a C dialect and stayed that way, because C has a proven track
record. The changes from C were mostly born out of necessity after rubbing out
the features of C that I did not want in a scripting language: no pointers and no
“typing” system.

Small, being a typeless language, needed a different means to declare variables.
In the course of modifying this, I also dropped the C requirement that all variables
should be declared at the top of a compound statement. Small is a little more
like C++ in this respect.

C language functions can pass “output values” via pointer arguments. The stan-
dard function scanf, for example, stores the values or strings that it reads from
the console into its arguments. You can design a function in C so that it optionally
returns a value through a pointer argument; if the caller of the function does not
care for the return value, it passes NULL as the pointer value. The standard func-
tion strtol is an example of a function that does this. This technique frequently
saves you from declaring and passing dummy variables. Small replaces pointers
with references, but references cannot be NULL. Thus, Small needed a different
technique to “drop” the values that a function returns via references. Its solution
is the use of an “argument placeholder” that is written as an underscore character

†
“The Theory and Practice of Compiler Writing”, McGraw-Hill, 1985, pp. 92.

Rationale / 147

(“ ”); Prolog programmers will recognize it as a similar feature in that language.
The argument placeholder reserves a temporary anonymous data object (a “cell”
or an array of cells) that is automatically destroyed after the function call.

The temporary cell for the argument placeholder should still have a value, because
the function may see a reference parameters as input/output. Therefore, a func-
tion must specify for each passed-by-reference argument what value it will have
upon entry when the caller passes the placeholder instead of an actual argument.
By extension, I also added default values for arguments that are “passed-by-
value”. The feature to optionally remove all arguments with default values from
the right was copied from C++.

When speaking of BCPL and B, Dennis Ritchie said that C was invented in part
to provide a plausible way of dealing with character strings when one begins with
a word-oriented language. Small provides two options for working with strings,
packed and unpacked strings. In an unpacked string, every character fits in a cell.
The overhead for a typical 32-bit implementation is large: one character would
take four bytes. Packed strings store up to four characters in one cell, at the cost
of being significantly more difficult to handle if you could only access full cells.
Modern BCPL implementations provide two array indexing methods: one to get
a word from an array and one to get a character from an array. Small copies
this concept, although the syntax differs from that of BCPL. The packed string
feature also led to the new operator char.

Unicode applications often have to deal with two characters sets: 8-bit for legacy
Support for Uni-
code string liter-
als: 111

file formats and standardized transfer formats (like many of the Internet proto-
cols) and the 16-bit Unicode character set (or the 31-bit UCS-4 character set).
Although the Small compiler has an option that makes characters 16-bit (so
only two characters fit in a 32-bit cell), it is usually more convenient to store
single-byte character strings in packed strings and multi-byte strings in unpacked
strings. This turns a weakness in Small —the need to distinguish packed strings
from unpacked strings— into a strength: Small can make that distinction quite
easily. And instead of needing two implementations for every function that deals
with strings (an ascii version and a Unicode version —look at the Win32 API,
or even the standard C library), Small enables functions to handle both packed
and unpacked strings with ease.

Notwithstanding the above mentioned changes, plus those in the chapter “Pitfalls:
differences from C” (page 106), I have tried to keep Small close to C. A final
point, which is unrelated to language design, but important nonetheless, is the
license: Small is distributed under a liberal license allowing you to use and/or

148 . Rationale

adapt the code with a minimum of restrictions —see appendix D.

149

License
appendix d

The software toolkit “Small” (the compiler, the abstract machine and the docu-
mentation) are copyright c©1997–2005 by ITB CompuPhase. The Intel assembler
implementation of the abstract machine and the just-in-time compiler (specifically
the files amxexec.asm, jitr.asm and jits.asm) are copyright c©1998-2003 Marc
Peter. The file jitsn.asm is translated from jits.asm and is partially copyright
G.W.M. Vissers. The file amxexecn.asm is translated from amxexec.asm and
is partially copyright ITB CompuPhase.

Small is distributed under the “zLib/libpng” license, which is reproduced below:

This software is provided “as-is”, without any express or implied warranty. In no
event will the authors be held liable for any damages arising from the use of this
software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

1 The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is
not required.

2 Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3 This notice may not be removed or altered from any source distribution.

The zLib/libpng license has been approved by the “Open Source Initiative” orga-
nization.

150 . License

151

Index

� Names of persons (not products) are in italics.
� Function names, constants and compiler reserved words are in typewriter

font.

! #assert, 93

#define, 71, 73, 93, 107

#emit, 93

#endinput, 93

#error, 93
#file, 94

#if, 94

#include, 93

#line, 94

#pragma, 94

#section, 97
#tryinclude, 98

#undef, 73, 98

@-symbol, 42, 62

. . . considered harmful, 4

A Actual parameter, 15, 48
Algebraic notation, 25

Alias, See External name

Alignment (variables), 94

Anno Domini, 10

APL, 25

Argument placeholder, 54
Array

enumerated, 44
enumerated ~, 18, 28

Array assignment, 84, 106
Arrays, 44

Progressive initiallers, 44

Arrays and enumerations (structured
data), 18

ASCII, 111, 113, 137, 138
Assertions, 9, 31, 81, 145

B Basic Multilingual Plane, 112
BCPL, 147
Big Endian, 78
Binary arithmetic, 24
Binary Coded Decimals, 81
Binary radix, 76, 106
Bisection, 58
Bit shifting increment, 24
bitcount, 24
Bitwise operators, 22
BOB, 144
Byte Order Mark, 138
Bytecode, See P-code

C Cain, Ron, 1
Call by reference, 12, 15, 60
Call by value, 12, 15, 50, 68
calldll, 104
Callee (functions), 52
Celsius, 13
Chained relational operators, 16, 85
char, 107
Character constants, 77
clreol, 103
clrscr, 103
Codepage, 95, 111, 113, 114, 138

152 . Index

Coercion rules, 60

Comments, 75
documentation ~, 32, 75

Commutative operators, 67

Compact encoding, 95, 138

Compiler options, 138

Compound literals, See Literal array

Conditional goto, 106

Configuration file, 141

Constants

“const” variables, 42
literals, 76

predefined ~, 80
symbolic ~, 79

Counting bits, 24

Cross-reference, 33, 140

D Data declarations, 41–45
arrays, 44

default initialization, 43
global ~, 41

local ~, 41
public ~, 42
stock ~, 42

Date arithmetic, 13

Debug level, 81

Default arguments, 54

Default initialization, 43

deleteproperty, 102

Design by contract, 31

Diagnostic, see also Errors/Warnings,
28, 47, 58, 114

Directives, 73, 93–98

Documentation comments, 32, 75

Documentation tags, 140

Dr. Dobb’s Journal, 1

Dynamic tree, 144

E Eiffel, 31
Ellipsis operator, 44, 51, 59
enum, 18, 79
Enumerated array, 18, 28, 44
Eratosthenes, 7
Error, see also Diagnostic
Errors, 39, 120–131
Escape sequences, 77, 78
Euclides, 4
existproperty, 102
Extended ASCII, 111, 137
External name, 64, 68

F Faculty, 50
faculty, 50
Fahrenheit, 13
Fibonacci, 8
fibonacci, 8
Fibonacci numbers, 8
Fixed point arithmetic, 58, 69, 104
Floating point arithmetic, 69, 76,

104, 106
Floyd, Robert, 55
Forbidden user-defined operators, 70
Formal parameter, 48, 49
Forward declaration, 49, 61
freedll, 105
funcidx, 99
Function library, 99
Functions, 49–64

call by reference, 12, 15, 50
call by value, 12, 15, 50, 68
callee, 52
caller, 52
coercion rules, 60
default arguments, 54
forward declaration, 49, 61

~ index, 99

Index / 153

latent ~, 91
native ~, 9, 63
public ~, 62
standard library ~, 99
static ~, 63
stock ~, 63
variable arguments, 59

G Gödel, Escher, Bach, 119
gcd, 4
getarg, 99
getchar, 102
getproperty, 101
getstring, 102
getvalue, 102
Global variables, 41
Golden ratio, 9
gotoxy, 103
Greatest Common Divisor, 4
Gregorian calendar, 9

H Hamblin, Charles, 25
Hanoi, the Towers of ~, 61
heapspace, 99
Hendrix, James, 1
Hexadecimal radix, 76, 106
Hofstadter, Douglas R., 119
Host application, 42, 43, 64, 90, 91,

99, 114, 142

I Identifiers, 75
Implicit conversions, See coercion

rules
Index tag, 28, 47
Indiction Cycle, 10
Infinit loop, 17
Infix notation, See Algebraic notation
Internationalization, 111

Internet, 147
intersection, 58

Intersection (sets), 21
ISO 8859, 78, 111, 137

ISO/IEC 10646-1, 112, 113

ISO/IEC 8824 (date format), 53
ispacked, 109

iswin32, 105

J Java, 142

Julian Day number, 9

K Keywords, See reserved words

L Latent function, 91
Latin-1, See ISO 8859

Leap year, 49

leapyear, 49
Leonardo of Pisa, 8

Library functions, 63
License, 149

Linear congruential generator, 100

Linked lists, 144
Linux, 113, 142

Literal array, 51

Literals, See Constants
loaddll, 105

Local variables, 41
Lukasiewicz, Jan, 25

lvalue, 47, 82, 116

M Macro, 71, 93

~ prefix, 73, 98
Metonic Cycle, 10

Meyer, Bertrand, 31

Microsoft Windows, 113
Multiplicative increment, 24

154 . Index

N Named parameters, 53
Native functions, 9, 63

external name, 64, 68
Newton-Raphson, 58
numargs, 99

O Octal radix, 106
Operator precedence, 87
Operators, 82–87

commutative ~, 67
user-defined ~, 64, 115

Optional semicolons, 75
Options

compiler ~, 138

P P-code, 71, 95, 131
Packed string, 78, 100, 109, 147
Parameter

actual ~, 15, 48
formal ~, 48, 49

Parser, 4
Placeholder, See Argument ~
Plain encoding, 138
Plain strings, 78
Plural tag names, 117, 118
Positional parameters, 53
power, 49
Precedence table, 87
Prefix file, 139
Preprocessor, 71–74

~ macro, 71, 93
Prime numbers, 7
print, 102
printf, 14, 103
Priority queue, 20
Procedure call syntax, 52
Progressive initiallers, 44

Proleptic Gregorian calendar, 9
Pseudo-random numbers, 100
Public

~ functions, 62, 99

~ variables, 42

Q Quine, 119

R random, 100
Random sample, 55
Rational numbers, 13, 28, 76
Recursive functions, 60
Reference arguments, 12, 50, 60
Report, 140
Reserved words, 75
Response file, 141
Reverse Polish Notation, 25
REXX, 144
Ritchie, Dennis, 107, 143, 147
rot13, 15
ROT13 encryption, 15

S Scaliger, Josephus, 9
Semicolons, optional, 75
Set operations, 21
setarg, 99
setattr, 103
setproperty, 101
Shadowing, 134
Shift-JIS, 112
sieve, 7
Single line comment, 75
sizeof operator, 87

~ in function argument, 55, 57
Small C, 1
Solar Cycle, 10
Sorenson, P., 146
sqroot, 58
Square root, 58

Index / 155

Standard function library, 99
Statements, 89–92
Static

~ functions, 63

~ variables, 41, 42
Stock

~ functions, 63

~ variables, 42
String

packed ~, 78, 100, 109, 147
plain ~, 78
unpacked ~, 77, 100, 109, 147

strlen, 100
strpack, 100
strtok, 16
Structures, see also Enumerated

arrays, 18
strunpack, 100
strupper, 110
Subject oriented, 146
Surrogate pair, 112, 114
swap, 50
swapchars, 100
Symbolic constants, 79
Symbolic information, 139
Syntax rules, 75

T Tag name, 14, 28, 46, 114

~ and enum, 80
array index, 28, 47

~ operator, 118

~ override, 47, 86, 116
plural tags, 117, 118
predefined ~, 81
strong ~, 47, 116

~ syntax, 81
untag override, 117
weak ~, 47, 115

Tag names, 145
tagof operator, 87
Text substitution, 71, 93
The Towers of Hanoi, 61
tolower, 100
toupper, 100
Tremblay, J.P., 146

U UCS-4, 78, 112, 113, 137
Unicode, 78, 112, 113, 137, 138, 147
Union (sets), 21
UNIX, 113
Unpacked string, 77, 100, 109, 147
Untag override, 117
User error, 93
User-defined operators, 64, 115

forbidden ~, 70
UTF-8, 113, 114, 129, 137

V Van Orman Quine, Willard, 119
Variable arguments, 59
Variables, See Data declarations
Virtual Machine, See Abstract ~

W Warning, see also Diagnostic
Warnings, 131–136, 140
weekday, 53, 92
White space, 75
Wide character, 113
Word count, 16

X XML, 33, 140
XSLT, 33

Y Year zero, 10

Z Zeller, 53
ZLib (license), 149

	Introduction
	A tutorial introduction
	Data and declarations
	Functions
	The preprocessor
	General syntax
	Operators and expressions
	Statements
	Directives
	Proposed function library
	Pitfalls: differences from C
	Assorted tips
	Appendices
	 Error and warning messages
	 The compiler
	 Rationale
	 License
	Index

